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Abstract 

The arrival, in the past decade, of commercially successful virtual worlds used 
for online gaming and social interaction has emphasised the need for a 
concerted research effort in this media. A pressing problem is that of 
incorporating ever more elaborate gaming scenarios into virtual worlds while 
ensuring player numbers can be measured in the millions. This problem reaches 
across a number of research areas in computing science and has already 
received attention from the research community in its own right. In this chapter 
the major problems associated to the provisioning of expected player interaction 
in large scale virtual worlds is described together with how research efforts may 
tackle such problems. Conclusions are drawn from observations of related work 
and a number of future challenges highlighted.   
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1. Introduction 

There are a number of commercial solutions to online gaming within which players 
may participate in virtual worlds that are persistent in nature. Such games are 
commonly termed Massively Multiplayer Online Role-Playing Games (MMORPGs), 
which is usually shortened to MMOs. Vendors generate revenue from such gaming 
environments by regular financial subscriptions made by players and/or from the 
value of virtual world artefacts (e.g., virtual land sales, percentage take from the inter-
player trading of virtual world artefacts, sale of additional vendor created virtual 
world storylines and artefacts). Fundamental to measuring the financial success of 
such games is the number of players actively participating: the more players there are 
the higher the financial rewards for a vendor. For example, World of Warcraft has 
boasted over 10 million subscriptions at its peak (subscriptions are typically $14 per 
month) [114]. An inability to attract sufficient player numbers leaves such gaming 
environments unprofitable and ultimately a wasted business venture. Such a waste is 
significant as the budget for bringing such games to market may be in excess of $10 
million [100], with some placing the figure closer to $50 million [101]. In addition, 
once an online game is up and running the maintenance costs may require total 
investment, including start-up, of close to $500 million to contemplate competing as a 
market leader [101]. These are the figures commonly discussed as of 2008; in years to 
come one may assume that vendors of such games discuss investment of in excess of 
$1 billion. These games are expected to become an integral part of many individuals’ 
leisure time. Having only been around for a decade yet attaining a significant business 
status, the notion of carrying out research into online gaming should be taken 
seriously by industrialists and academics alike.  

As the number of participating players is an indication of financial success, a pressing 
research problem is the need to provide scalable solutions for MMOs. One may 
assume that scalability has been achieved as no new players are ever turned away 
from a commercial MMO. However, scalability should be measured not only by how 
many players can log into a virtual world, but how many players can interact with 
each other at any one point in time and what level of interaction is afforded. 
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Presenting the most attractive gaming scenarios via rich interaction provides a 
competitive edge in MMOs and is one element of online worlds that players will 
immediately identify as desirable. This is because vendors attempt to immerse players 
in their online worlds. Such immersion is only achievable by the ability to afford 
heightened realism via a highly responsive environment together with minimal 
hindrance to in-world player interaction.  

There is no doubt that existing commercial solutions have achieved success and 
brought to market a series of excellent products. The purpose of this chapter is not to 
indicate that their efforts are not admirable, but to indicate that these are the first steps 
taken in this area and one may assume that significant improvements will be expected 
in the future. A subset of such improvements will be related to player interaction 
within a virtual world whilst maintaining scalability. As this is a fundamental 
challenge in creating MMOs, research efforts are still required in this area.  

There are already a number of research efforts addressing scalability and interactivity 
in MMOs, with a number of academics contributing to ever more appropriate 
solutions for over twenty years. Early works do address the scalability/interactivity 
problem and do provide many of the techniques that modern commercial products 
base their solutions on. More recently works have continued to address scalability and 
interactivity in the context of MMOs, yet such works appear in a number of different 
areas of computing science (e.g., graphics, distributed systems, parallel simulation). 
As such, the MMO researcher is faced with a wide variety of different approaches and 
possible solutions. Furthermore, there exists a large body of work conducted that is 
not achieved in the context of MMOs, but may provide MMO researchers with a 
valuable resource. In the future, researchers in other fields may recognize the 
significance their work may have for MMOs and tailor their solutions appropriately. 

The aim of this chapter is to provide an introductory text which explores the problems 
of MMO scalability and to describe research efforts that may be of benefit. This is 
achieved by first describing the type of gaming scenarios that may occur in MMOs 
and relating such scenarios to classic problems so far tackled in distributed systems 
research. Related work is then presented that is directly or indirectly related to MMOs. 
A series of challenges associated to MMO scalability and interactivity is then 
presented that are still to be tackled successfully, posing a number of questions that 
reinforce the difficulty of such challenges. Finally, conclusions are presented with a 
brief view of what future challenges may hold for the MMO researcher.  

 

2.  Gaming Scenarios 

In this section we wish to ignore, for the moment, implementation details and 
concentrate on the basic model for describing gaming scenarios. We assume gaming 
scenarios are prolonged instances of interaction between players in a virtual world. 
This is not an attempt to actually determine what a game is in essence, but simply a 
description relating to the mechanics of interaction required to provision a gaming 
scenario. What defines a game in relation to human interaction is a field of study best 
left to psychology [1]. For the purposes of this chapter, a virtual world gaming 
scenario is considered to be similar to gaming scenarios found in the real world.  

To promote a tutorial type style, descriptions are presented in an informal way. 
Formalisms that present the most accurate descriptions are not presented. Such 
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formalisms do exist in other texts and can be gained by the reader via the references 
presented.  

 

2.1.  A Classic Model 

A gaming scenario, in its simplest descriptive form, is a series of events witnessed and 
generated by artefacts of a virtual world. Artefacts may be player controlled (e.g., 
avatars representing the embodiment of a player) or non-player controlled. Non-
player controlled artefacts commonly refer to either an algorithm implementing some 
sub-routine to present automated interaction or periodically generated events within a 
virtual world (such as the onset of sunset). For clarity, all artefacts with the ability to 
cause events are considered in the same manner here. Therefore, a simple model of a 
gaming scenario could be described as follows: An artefact, say A1, generates a series 
of events, say E1 and E2, which may be witnessed by a different artefact, say A2. A2 
itself may generate a series of events that may also be witnessed by A1, say E3 and E4, 
with an additional artefact, say A3, witnessing the events E2 and E3 only. In this simple 
example, two artefacts have generated four events between them and such artefacts 
have witnessed all these events with a third artefact having only witnessed a subset of 
events. We show this example in the space-time diagram in figure 1 (arrows indicate 
the “witnessed” property and black dots represent events). 

 

A1 

A2 

A3 

E1 E2 

E3 E4 

 

Fig 1. Space-time diagram describing propagation of virtual world events 

 

The act of “witnessing” an event by an artefact may be represented, in its simplest 
form, via message passing between artefacts: an artefact, say A1, generates an event, 
say E1, that results in a message, say M1, been sent from A1 to A2 to enable A2 to 
witness event E1. This notion of message passing brings our model for gaming 
scenarios inline with the more general model for distributed computing.  

The distributed computing model is now, briefly, described. This description may be 
found in much more detail penned by other authors (e.g., [2], [3], [4]). However, the 
description is provided here for completeness and to allow the novice reader sufficient 
understanding of the model to ease comprehension of this section as a whole. 
Although reasoning about gaming scenarios with reference to the distributed 
computing model may appear obvious, this has not been achieved previously with the 
same detail as presented here. 
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The distributed computing model is represented by a number of processes connected 
by a communications network that allows inter-process information flow (message 
passing) with the overall state of a system described in terms of events and their effect 
on local processes and channels [4]. Processes may act independently of each other 
(autonomously) and events may be described in terms of local (internal - occur at a 
single process), send (sending of a message) and receive (receiving of a message). In 
relation to our discussion so far, we can see that artefact and process are, for all 
practical purposes, describing the same notion at this level of abstraction. Therefore, 
to align with other literature artefacts will be described as processes from now on. 

Figure 2 updates the diagram in figure 1 to include the send and receive events. In 2.i 
ei
x 

should be read as i identifying the type of event (internal, send, receive) and x 
identifying the original event as described in figure 1 (to allow comparison). In 2.ii 
the more appropriate notation is used where i is the artefact (now identified as P for 
process) associated to the event and x is the number of an event at an artefact 
(allowing all events to be identified in a unique manner). 
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Fig 2. Space-time diagram including internal, send, and receive events 

 

The state of a distributed computing model may be considered either globally, or on a 
per-process basis. Events dictate state change at the process where they occur and the 
intermediary information link on which they may pass as a message. Considering the 
space-time diagrams, it is clear that events are ordered in a linear manner at each 
process. Such a linear ordering is said to represent the execution of a process. The 
global state of a system is said to be represented by the cumulative state of all 
processes and information flows at a single instance in time. However, as taking such 
a snapshot is unlikely for many real-world systems, a consistent global state suffices. 
In such a state the premise that all received messages must have been sent must hold, 
with researchers commonly using this view to describe their systems.  

Different assumptions may be made regarding the distributed computing model. 
These assumptions, ultimately, must reflect the deployment environment of a system. 
Two basic assumptions that tend to divide the distributed computing community are 
those pertaining to the reliability of communication links and processes. Processes 
may fail via a crash manner (faulty processors stop) [9] or byzantine manner (faulty 
processors continue to produce output) [6] (one must realise there are a number of 
varying failure models found between these two extremes). Communication links are 
commonly modelled as either asynchronous (message and processing delays are 
bounded but unknown) or synchronous (message and processing delays are bounded 
and known) [5]. For example, systems deployed over the Internet within which 
compromised (hacked) computers may be present typically favour 
asynchronous/byzantine type models whereas real-time, failure safe, hardware 
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controlled co-located private network type systems may be more likely represented 
via synchronous/crash models. Achieving synchronous/crash model environments for 
deployment requires an overreaching control over all aspects of implementation and is 
therefore difficult to achieve in many circumstances. 

An assumption may be drawn that the modelling of gaming scenarios has its 
foundations in the theoretical research of distributed computing and, therefore, the 
same theoretical approach may be used: event generation and dissemination amongst 
a collection of processes over time can be used to reason about a gaming scenario. 
This provides researchers into online multi-user virtual worlds with a wealth of 
existing research from distributed computing on which to draw upon. Indeed, such 
fundamental work needs to be understood to allow for any reasoning about, and 
engineering of, the mechanics of gaming scenarios. 

 

2.2  Cause and Effect 

Hinted at in the previous section but not explicitly described is the notion of a causal 
relationship between events. This relationship is a key element for aiding in the 
reasoning about a distributed computing model and, therefore, making progress 
towards attaining valid gaming scenarios.  

The events generated in a gaming scenario may manifest themselves in a variety of 
ways in a virtual world and may be described via a variety of application dependent 
types. As a gaming scenario progresses one may assume that the type of one or more 
events generated by a process may be based on the knowledge of previous events 
witnessed by such a process. This observation is obvious when considering the 
alternative: if all processes generated events without consideration of previous events 
then one would find it inconceivable that a gaming scenario could be described at all 
(player choice based on current game state is not possible). In essence, when viewed 
globally we may deduce that an event, say E1 may have caused an event, say E2. This 
is the classic “happens before” relationship as described by Lamport [7] and indicates 
that E1 “happened before” E2 (E1 → E2). The consideration of causal relationships 

throughout a distributed computation provides a partial ordering of events; partial as 
simultaneous events (those that do not share a causal relation) may be arbitrarily 
ordered with respect to each other. 

To exemplify the importance of causality consider a gaming scenario consisting of 
four players (P1, P2, P3 and P4). The goal of the game is for a player to shoot all other 
players. The virtual world is constructed from a number of different rooms and 
players may not shoot beyond the room they are within. For clarity we describe the 
gaming scenario in plain English first: P2 enters a room (containing P1, P3 and P4) and 
is shot by P1 while P4 leaves the room and P1 and P3 reload their guns at some point 
during the gaming scenario. To allow this gaming scenario to proceed there is a need 
to propagate event notification, that is, different players must be informed when 
certain events happen so they may react. As such, the order in which messages are 
received are important to ensuring causal relations between events are viewed 
appropriately by each player. Common practise is to uniquely identify messages in 
space-time diagrams to afford discussion not only for events but also to associated 
messages. Furthermore, the notion of a broadcast message (same message sent to all 
possible recipients) is introduced to describe notification of an event for more than 
one player. A message is described using mi

j, where i denotes the sending process and 
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j denotes the number of the message sent by the sending process. j is commonly 
termed a logical clock, in that the message is time stamped not with wall clock time 
but with a logic based progression (usually incremental integers). 

Using the diagram in figure 3 we now describe the scenario stating when events occur. 
In this model we assume messages are not lost, processes do not fail, and message 
transit is FIFO. P2 enters the room where P1, P3 and P4 reside (E2

1) at approximately 
the same time as P4 leaves the room (E4

1), which is witnessed by all players via M2
1 

and M4
1 respectively. P1 loads their gun (E1

1) and shoots their gun at P2 (E1
2). The 

firing of the gun is seen by all (M1
1). P2 realises they are shot (M1

1) and dies (E2
2), 

informing all other players of their mortal wound (M2
2
). During the shooting of P2, P3 

reloads their gun (E3
1
). A number of events can be ordered arbitrarily with respect to 

each other (e.g., E1
1 and E3

1), with many events exhibiting causal relations (e.g., E2
1
 

→ E1
1 → E1

2→ E2
2 → E2

3).    
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Fig 3. – Causality in gaming scenarios 

 

By considering figure 3, we can identify important information about the gaming 
scenario and make some judgement on a game’s validity. This can only be achieved 
by retaining the causal ordering of events. In our example this was the case. However, 
by considering the impact of message latency on our model the ability to maintain 
causal ordering becomes a challenging issue. 

In figure 4 message latency plays an important factor. Consider the message 
associated to P3 being notified of P2’s entrance to the room (M2

1) delayed. As a result, 
P3 is notified that P2 is shot before P3 realises that P2 is in the room. Due to the lack 
of preserving causality P1 has gained an unfair advantage over P3 as the opportunity 
to shoot P2 was only made available to P1. 
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Fig 4 – Causal violation 

 

To preserve causality in figure 4.i there is a need to ensure that P3 witnesses E2
1 (M2

1) 
before E1

2 (M1
1). The term witness is not adequate for describing this process and 

what actually is required is a distinction to be made between the receiving of a 
message by a process and the ability to act on such a message. This introduces the 
classic send, receive and deliver approach to describing message handling in 
distributed computations: although P3 received M1

1
 before M2

1
, P3 does not actually 

deliver M1
1 until it has delivered message M2

1 (preserving causal ordering). This 
delayed delivery is shown in figure 4.ii. 

 

2.3  Ordering  

Although causality is an important element that should not be ignored when 
modelling gaming scenarios, it is by no means the only ordering constraint that should 
be considered. Sometimes causal ordering is not a sufficiently strong ordering 
guarantee for the purposes of modelling gaming scenarios. Returning to the example 
in figure 4.i, the inability to afford an equal opportunity to both P1 and P3 in 
attempting to shoot P2 is considered a problem. This problem will manifest itself in 
the virtual world by presenting two different views of the gaming arena to P1 and P3: 
one with P2 present (P1) and one without P2 present (P3). Even with causal relations 
maintained, a similar problem may occur with respect to realising who is in the room 
at the beginning of the gaming scenario.  

Consider figure 5 where message transit times are greater than zero and may vary for 
different links in a network. In this instance M2

1 is delayed and arrives at P4 after M4
1 

has been sent (no causal relationship exists between E2
1 and E4

1 nor their associated 
messages M2

1
 and M4

1
). Played out in a virtual world, P1 will witness P2 enter the 

room (P1, P2, P3 and P4 present) then P4 leave the room (P1, P2, and P3 present). P3, 
on the other hand, witnesses P4 leaving the room (P1 and P3 present) before P2 enters 
the room (P1, P2 and P3 present). There is no causal relationship present between E2

1 
and E4

1 as M2
1 and M4

1 arrive at their destinations after E2
1 and E4

1 have occurred 
(indicating that one event could not have caused the other). Unfortunately, the 
manifestation of this in the virtual world still provides inconsistencies. This indicates 
that although some events may not be causally related as they happen simultaneously, 
in a logical sense, there may still be a need to impose some form of ordering on them 
to preserve a gaming scenario’s validity. 
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Fig. 5 – Different views 

 

To ensure that P1 and P3 install the same consecutive views relating to when P2 and 
P4 are present in the room, an ordering guarantee stronger than causal ordering is 
required. Total ordering [8] is capable of ensuring that all participants view global 
events in the same order. This is not simply a case of ensuring that M2

1 and M4
1 are 

received in the same order at P1 and P3, but the order in which all participants 
(including P2 and P4) receive M2

1 and M4
1 must be the same. In fact, to ensure the 

total ordering of global events at all participants the events themselves must gain their 
ordering from the underlying protocol governing message delivery. If this was not the 
case then P2’s view would be that of leaving a room before P4 entered whereas P4’s 
view would be that of entering a room with P2 still present. 

Total ordering is achieved with the use of a broadcast to all participants, allowing all 
participants to ensure they are observing the same ordering of message delivery. 
Figure 5.ii identifies these steps with respect to P2 leaving the room. The event 
equivalent to leaving the room (E2

1) is attempted (but not carried out – i.e., a request 
to leave the room by a player) at the originating participant (P2). This event is shown 
in a shaded manner to distinguish this from the processing of an event. Once the 
initial broadcast has been achieved a number of further message passing will be 
required to ensure total ordering (not shown) until eventually E2

1 is delivered to all 
participants, including the originator P2.  

Total ordering is primarily designed to ensure consistency of state for deterministic 
state machines [10], particularly useful in replication schemes used in fault-tolerance 
(e.g., [11], [12]). The guarantee that if all replicas receive the same messages in the 
same order then their states will not deviate (this cannot be guaranteed for non-
deterministic state machines). Therefore, state change events should always be 
propagated across all replicas to ensure states remain mutually consistent. If this route 
was followed in the example then local events would need to be propagated to ensure 
all processes maintained a mutually consistent view of the state of a gaming scenario 
(e.g., E1

1). 

 

2.4 Dynamic Environments 

When discussing total ordering in the previous section a broadcast (message sent to 
all) was used as the basic message dissemination technique. For practical purposes 
this is not appropriate as one may expect only a subset of participants to be involved 
in any one gaming scenario at a time. Therefore, the multicast is a more appropriate 
message dissemination technique, allowing players to join and leave gaming scenarios 
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as they wish. Multicast introduces the concept of a “group”. A group identifies the 
recipient of a multicast message with the membership of a group having the ability to 
change over time. In the example in figure 5 P2 and P4 change the membership of the 
group of players who are “in the room”. The problem of “who is in the room”, 
discussed in the previous two sections, highlights another problem that requires more 
than ordering protocols to aid in deriving an appropriate solution. This problem 
relates to determining exactly when messages are deliverable in the presence of 
dynamic group membership. We continue to use the “who is in the room” example to 
describe the issues that arise. 

In figures 4 and 5 P4 is still receiving messages after they have left the playing area 
(the room). Therefore, a more appropriate approach would be to restrict multicast 
messages to include only those inside the room. We would like participants to install 
the views of room occupancy as follows: P1 and P3 ({P1, P3, P4} followed by {P1, P2, 
P3}); P2 ({P2} followed by {P1, P2, P3}); P4 ({P1, P3, P4} followed by {P4}). Notice 
how P2 and P4 have views that only include themselves at some point to hinder the 
inappropriate multicasting of messages (we assume there is nobody else outside in 
neighbouring rooms).  

The ordering of views in a dynamic environment alone is ineffective if we don’t order 
the event dependent messages with respect to view changes. For example, we may be 
able to ensure that all participants provide the same view changes in the same, total, 
order. However, if the set of messages in such views varies from participant to 
participant we will not solve the problem highlighted in figure 5. Therefore, there 
needs to be some guarantee to ensure the same set of messages is delivered to all 
participants in the same view, disallowing message delivery when view changes are 
being determined. For example, in figure 6 the view change event occurs at the initial 
steps of the gaming scenario, therefore, this view change should complete to ensure 
all participants’ progress with the same messages delivered in the appropriate views. 
As with ordering, multiple messages will be required to allow all participants to 
realise the appropriate group membership changes. 
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Figure 6 – View changes 
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Virtual synchrony [13] is the term used to describe the total ordering of view changes 
with respect to other messages (e.g., the ones responsible for propagating events). 
Notice that the definition of virtual synchrony does not impose total order on other 
messages, just the view changes with respect to all other messages. Therefore, it is 
quite conceivable to have a causal ordering with virtual synchronous systems.  

 

2.5  Reaching Agreement 

An underlying problem that arises frequently in distributed computing models is that 
of agreement. In essence, the previous examples are strongly related to agreement as 

one may assume that agreement on message ordering and group membership is a 
requirement that processes must satisfy.  The agreement problem assumes that a 
process has an initial value to share with all other processes in its group (all processes 
must agree on this value) [6]. Alternatively, all processes may have their own, initial, 
value and all processes must agree on a single value [6]. The latter scenario is known 
as the consensus problem but, for the basic interpretation made here, can be viewed in 
the same manner as the agreement problem.   

Consensus is the cornerstone of many fault-tolerant systems, as reaching consensus on 
who has failed is a problem that must be handled. For example, if three replica 
services provide fail-over for clients, all non-faulty replicas must agree on who is 
faulty to allow fail-over to proceed appropriately. In addition to fault-tolerance and 
consensus, other flavours of consensus exist: approximate agreement (where 
agreement is to determine values similar to each other), probabilistic agreement 
(where agreement is sought with a high probability) [4]. 

While considering agreement it is worth realising that it is impossible to implement an 
agreement protocol in asynchronous environments when in the presence of faulty 
processes [14]. One simple way to visualise this impossibility result is to consider 
how one may tell the difference between a correct process and a failed one. Basically, 
when message and processing delays are unknown, it is impossible to tell if a process 
is slow or failed; how long will you wait for a response? For a broader discussion on 
the impossibility to resolve a number of problems in distributed computations in 
general the reader is referred to [25]. 

Circumventing the impossibility problem of reaching agreement in asynchronous 
environments has been tackled extensively in the literature on fault-tolerant 
computing. Two variations are available. One utilises the notion of unreliable failure 
detectors [15] [16]; described in very brief, but clear terms: allow incorrect suspicion 
of failure to prevail, as long as some agreement on failed processors may be reached 
in a number of correct processors at some point in the future (reducing the outcome to 
a probabilistic chance of success). The compromise made is that correct processes 
may be incorrectly identified as failed during this process. Another variation, and 
most widely used, is via transactions: two-phase commit may be used to indicate to a 
group of processes the steps of preparing a value for committing, then demanding that 
such a value be “committed” to all participating processes’ states [17] [18] [19]. The 
sacrifice here is that processes guarantee to commit the required state change they 
promised to and may not participate further until such guarantee is satisfied. Both 
these approaches carry substantial messaging overheads. In particular, transactions 
rely on persistent storage to ensure that when a process returns to correct operation 
any outstanding transactions may be committed. For a discussion relating these two 
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approaches, identifying their differences and similarities, the reader should note the 
paper [87]. 

 

2.6  Groups 

A collection of protocols that provide the message dissemination abstractions 
discussed so far (possibly more) are commonly termed group communication 
protocols [13]. Such systems are primarily the domain of the fault-tolerant research 
community and concentrate on asynchronous environments, with many design and 
implementation variations possible. This area of research has provided a substantial 
number of papers and software products. This is primarily due to the many 
assumptions that can be made regarding the deployment environment and the 
behaviour of group members themselves. As the impossibility result is something that 
cannot be circumvented, the ability to “inch” towards ever more appropriate solutions 
is a quest taken up by many [4]. 

Software products that provide group communication services have a number of 
components: ordering protocols (possibly more than one); failure detectors (based on 
unreliable failure detectors); group membership protocols (providing dynamic 
groups); reliable multicast (commonly termed atomic multicast – termed atomic 
broadcast in the literature as consideration of sub-groups not necessarily considered 

in the basic problem description) [15]. In addition to these basic services, such 
products may also provide: overlapping groups (members may simultaneously belong 
to more than one group) [17]; open groups (allowing processes to send messages into 
groups that they are not a member of – the standard alternative is the closed group 
approach) [12]; partitionable operation (due to incorrect suspicion of failure, or 
network link failure, groups may partition into multiple, distinct, sub-groups) [21]. 

 

 

(i) Open and closed Groups (ii) Overlapping Groups 

 

Fig. 7 – Some group configurations 

 

Although there are many minor variations available for the developer to choose from 
when designing group communication protocols, the primary design choice when 
considering ordering of messages is between symmetric and asymmetric approaches 
[22]. In the symmetric approach all group members cumulatively assume 
responsibility for message delivery guarantees, requiring group members to 
participate in a number of message passing rounds with all other group members. In 
the asymmetric approach a single group member (sequencer) assumes responsibility. 
Non-sequencer group members unicast their messages to the sequencer, which orders 
such messages and subsequently multicasts (in order) to group members. An 
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underlying network that provides FIFO message ordering is required for the trivial 
implementation of asymmetric ordering. In practical situations asymmetric ordering 
can provide significant performance benefits over symmetric approaches as fewer 
messages are required (unicast as opposed to multicast) and messages arrive in the 
appropriate order. However, when a sequencer fails no forward progression can be 
made until a new sequencer is elected (usually from the remaining group members). 
Sequencer election (sometime called leader election) faces the impossibility result 
(agreement required) and is not a trivial issue and may be extremely time consuming 
to accomplish (possibly resulting in multiple sequencers which must be handled) [23] 
[24]. 

 

2.7 Timely Progression 

Not mentioned so far, yet of great importance to modelling gaming scenarios 
appropriately, is the need for timely progression. In the previous sections there was a 
logical view taken of gaming scenarios with the length of time required to execute 
events and send messages not considered. However, virtual worlds are expected to 
provide players with the illusion of real-time (or at least near real-time) interaction. 
Events that appear to occur “too slowly” may destroy such an illusion and render the 
gaming experience inappropriate: virtual synchrony, total ordering, and failure free 
environments (if such an environment could be created) will not prevent excessive 
delays in event propagation from ruining a gaming scenario. For example, in figure 6 
it may be possible to implement total ordering and virtual synchrony appropriately, 
but there is nothing in this logical view of the world preventing P1 from viewing the 
leaving of P2 and the arrival of P4 before P3 in (real) global-time. By not considering 
time we are not providing a “fair” gaming scenario for players. All observations so far 
have been made in “logical time”. 

Synchronous environments provide an opportunity to include timing when describing 
gaming scenarios. For example, if one realises that message delays and process delays 
have a known bound, then synchronisation of local clocks may be achieved with 
minimal effort. Once this step has been achieved, then placing timeouts on the 
expectation of player interaction can be worked into an implementation. Furthermore, 
given the known timeouts associated to a system some design choices may be made to 
determine what gaming scenarios are actually possible and prevent needless 
explorations of gaming scenarios that are impractical. 

Gaining a synchronous environment is difficult. In practice developers attempt to 
focus on certain elements of a system that may be made synchronous, possibly using 
enhanced networking protocols and hardware devices to gain as close to a 
synchronous environment as practically possible (e.g., [26] [27]). However, even with 
such approaches a major problem with gaining a universally synchronous 
environment is the presence of third party devices that are simply beyond a 
developers/systems control but a necessary part of an overall system’s operation. In 
commercial online gaming these are many (e.g., ISP, home console, gaming interface, 
variable player interaction times). 

If one does not consider real time (wall clock time) then there could be anomalous 
behaviour exhibited by a system. This is because logical time may create an ordering 
of events that does not reflect the same ordering when viewed in wall clock time. For 
example, consider two events E1 created by P1 at 10.15am and an event E2 created by 
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P2 at 10.30am. If no causality exists between such events then it is quite conceivable 
that these events may be viewed in the order E2 followed by E1 in a virtual world. The 
virtual world will be consistent, but the behaviour of the virtual world may appear 
distinctly odd to players. Therefore, wall clock time is a concern to any that wish to 
model gaming scenarios appropriately and logical time alone, although important for 
attaining consistency, is only a partial solution.  

 

2.8  Best Effort 

Considering the difficulty, and in some cases the impossibility, of providing gaming 
scenarios that reflect real-world interactions in commercial virtual world solutions 
there is a need to make compromises. Compromises must be handled in the game play 
itself. In other words, the illusion of interaction is maintained while the underlying 
protocols governing such interaction do not always provide the required message 
delivery guarantees.  

After acknowledging that erroneous situations will occur with respect to message 
delivery, a developer must decide how much effort (time/processing) the underlying 
system expends to progress towards appropriate modelling of a gaming scenario at the 
expense of real-time requirements. In the research community primarily concerned 
with online virtual worlds this has been termed the consistency/throughput trade-off 

(this term originally concerned itself with the throughput of a network as opposed to 
additional message passing requirements) [28]. Basically, the consistency referred to 
is the desire to allow all players to have a mutually consistent view of a gaming 
scenario. However, in commercial virtual worlds this manifests itself not so much in 
non-consistency of views but in restrictions on what is and is not possible in gaming 
scenarios. 

In practical solutions the consistency/throughput trade-off manifests itself most 
visibly when a virtual world is required to be scalable. Scalability in virtual worlds is 
commonly measured as the number of participants that can be supported 
simultaneously. As protocols enforcing a degree of consistency tend to produce 
message volumes that grow rapidly when participant numbers rise and message 
delivery delays tend to be related to the slowest participant, scalability is difficult to 
achieve. To achieve scalability there is a need to send fewer messages and not to wait 
too long before messages become deliverable. Three approaches exist to allow 
consistency to be “traded” in favour of scalability requirements. These three 
approaches approximate to the three elements of the distributed computing model 
described so far: 

 

• Messages – relax delivery guarantees  

• Events – allow players to witness “approximated” events 

• Players – only inform players of events they may be interested in 

 

Relaxing message delivery guarantees equate to allowing some messages to be “lost” 
(either at process buffer overflow or network level), and tolerating inappropriate order 
delivery (possibly with varying view inconsistencies with respect to group 
membership). Approximated events reduce the need for message passing for event 
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propagation. An event, say E1, occurs at one process, say P1, but is not disseminated 
to other processes, say P2 and P3. P2 and P3 create the (approximated) event locally 
(without message passing). When creating such an event some prediction method may 
be used (a technique commonly used is dead reckoning) [29]. The approximated 
event will be different, but (hopefully) within some error bound as to allow such an 
event to present an appropriate progression in a gaming scenario. Limiting the number 
of processes that are sent messages via the identification of player interaction, again, 
reduces the need for message passing. The basic idea is simple: only send messages to 
those processes that are actually interested in them and prevent the sending of 
messages to processes that are not interested in them [30].  

Considering the optimisation approaches suggested, guarantees for message delivery 
for online gaming are more relaxed that those found in the fault-tolerant community’s 
approach to group communications. However, the goals both communities are 
attempting to achieve are not dissimilar and share a common model. For example, 
online gaming must approximate a group membership protocol (only sending game 
events to those interested in them) and at least some messages must be delivered to 
receiving nodes at some ordering level to afford correct, and expected, player 
interaction. 

 

3. Related Work 

In this section we describe a number of related works that have contributed to the 
current state-of-the-art for large scale virtual worlds. The earliest works are 
considered first, followed by descriptions of commercial solutions. The more specific 
issues affecting scalability (synchronisation and load balancing) are then described. 
At this point the discussion of related work broadens to include those works that were 
not carried out in the context of virtual worlds, but tackle similar problems.   

 

3.1  Early Days 

The early pioneers in the creation of virtual worlds came from a variety of research 
backgrounds: high performance graphics, human computer interaction, commercial 
gaming, virtual reality, military simulation. Many of the basic notions of what it takes 
to build scalable virtual worlds were discovered and experimented with in these early 
days. One of the truly admirable aspects of this early work is that real systems were 
built and demonstrated in both academic and commercial settings. All the techniques 
that attempt to gain increased scalability, see 2.8, were all demonstrated in these early 
systems for the first time. The work is substantial (it was quite a busy area in the 80s 
and 90s) and whole books have been written about these systems (e.g., [28] [31]). 
Only the most relevant developments that directly relate to the attempts of scalability 
are discussed here. 

Throughout the 80s (1983 onwards) SIMNET (simulator network) [29] was 
developed to provide the American military with a virtual battlefield on which to train 
individuals. A number of simulators (e.g., tank) could be networked together. The 
successor to SIMNET, DIS (Distributed Interactive Simulation), aimed to standardise 
and generalise a protocol for use in more heterogeneous environments as SIMNET 
was not an “open” platform [32]. In these early systems message ordering and 
reliability guarantees are deliver when receive (no further message passing to enforce 
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any ordering or reliability). Dead reckoning was used to lower the message passing 
burden with participant numbers expected to be less than 1000 (designed for around 
500). No central server was used, with a peer-to-peer architecture assumed. 
Participants could arrive and leave at arbitrary points throughout the execution of a 
simulation. Messages were lost, or arrived out of order. Inevitably, inconsistencies in 
the simulations would occur (conveniently termed “the fog of war” [28]). 
Inconsistencies aside, these two early systems provided functioning virtual worlds 
that served their training purposes well for the American military [31] with increasing 
standardisation resulting in the High level Architecture (HLA) [68].  

The DIS to HLA transition may be viewed in a similar light as the RPC to CORBA 
transition that occurred in the mid-90s in middleware technologies; bringing a greater 
degree of standardisation to how a distributed application may be structured. The 
HLA went much further than DIS in its prescriptions, indicating artefact 
representation in a virtual world. Immediately after the introduction of the HLA the 
amount of work in online worlds appears to have decreased in the literature, possibly 
due to the USA’s Department of Defence’s instruction that all future work in this area 
must be HLA based, one can’t say for sure. However, since the late 90s the most 
successful online worlds have been commercial and non-HLA compliant. 

In addition to the high cost military projects, a number of PC games appeared in the 
90s that could support networking. As with SIMNET and DIS, no respect was paid to 
message delivery guarantees (e.g., deliver when receive, send multiple times if 
important [33]). Such games limited player numbers (4 or less for Doom) with players 
quite often expected to be co-located on the same LAN to ensure network latency 
would not hinder game play. Even before these games existed players had enjoyed 
online virtual worlds in the form of Multi User Dungeons (MUD) [88] and novel 
commercial games that afforded limited networking [89]. These early attempts were 
more a forerunner of Internet Relay Chat (IRC) as communications manifested 
themselves in the form of text messages between players with little graphical 
representation. In addition, these works are not well documented and only messages 
on a variety of newsgroups afford insight into the technical aspects of such systems. 
For these reasons, these works do not afford a significant insight into constructing 
large scale virtual worlds. 

Pioneering academic work in virtual worlds resulted in NPSNET [30] (and its 
descendents 2, 3, and 4). The military and early commercial work was not 
documented in the academic literature at the time; therefore, NPSNET presented the 
first major advances in understanding how to build online virtual worlds in the public 
domain. For example, NPSNET-IV could interact with DIS and utilise IP-Multicast 
for more judicious use of bandwidth [34]. NPSNET used dead reckoning to ease the 
messaging burden. However, message delivery guarantees were best effort and 
inconsistencies would still be an issue. Further academic works extended ideas and 
concepts originated in NPSNET. PARADISE allowed a more intricate modelling for 
dead reckoning [35] and reduced message sending with the ability to retrieve state 
information for artefacts that send messages infrequently [36].  This protocol was 
termed the “Log-Based Receiver-Reliable Multicast”, and allowed receivers that 
noticed a missing message (by way of logical timestamps) to retrieve such messages 
from a persistent logging server. In actuality, the protocol is not reliable in the same 
context as atomic multicast is considered reliable and did not solve ordering issues.  
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From the perspective of group communications, DIVE (Distributed Interactive Virtual 
Environment) presents an excellent case study [37] [38]. DIVE is considered a 
collaborative virtual environment (CVE); where emphasis is primarily based on 
collaboration of participants as opposed to realistic simulation (e.g., shared drawing) 
and was built on the first fully functioning group communications toolkit (ISIS) [39] 
in the early 90s. ISIS provides many of the elements described in section 2 (e.g., total 
and causal ordering, virtual synchrony, failure detection) and so provided DIVE with 
the strongest consistency possible of all virtual worlds (before and since). 
Unfortunately, choosing a fully functioning group communications service appears to 
have been a problem, as later versions of DIVE sacrificed their consistency in favour 
of scalability (dropping the use of ISIS). With ISIS, DIVE could not support more 
than 20-30 participants without significant deterioration of interactivity between 
participants in the virtual world [40]. This was the first and last time that the fault-
tolerant approach to group communication services would be used to support a virtual 
world as ISIS clearly demonstrated the lack of scalability. Such scalability is of little 
issue when dealing with 3 or 7 replicas, but it is an issue when requiring real-time 
virtual world access for hundreds, thousands possibly millions of participants. 

In the mid to late 90s a CVE was developed named MASSIVE (Model, Architecture 
and System for Spatial Interaction in Virtual Environments) [42]. MASSIVE provided 
a novel model for attempting to capture the degree of interaction between participants. 
The aura-nimbus model allowed an artefact in a virtual world to “express” their 
interest in, and their influence over, other artefacts. This model was actually 
developed prior to MASSIVE (spatial model) [41] and experimented in a limited 
manner within the DIVE system, yet is always associated with MASSIVE. Figure 8.i 
shows an example of the aura-nimbus model where the aura of P3 is overlapping with 
the nimbus of P1 and the nimbus of P2, indicating that P3 is sending messages to P1 
and P2. This model is restricting message passing by only sending messages to those 
participants that are interested in them. Therefore, one may assume this provides an 
opportunity for trading consistency in favour for scalability. However, the original 
intention of this model was to enhance interaction (on a per-artefact basis) rather than 
gain scalability. MASSIVE went through a number of developments, with the long 
running project producing a further two versions (MASSIVE-2 and MASSIVE-3) 
[43]. In practise, the aura and nimbus are represented as boxes in MASSIVE (possibly 
due to their ease of overlap identification in 3 dimensions and the fact this distracts 
little from the core requirement of determining interaction) [44]. 

 

 

P1 
P2
2 

P3 

(i) aura-nimbus (ii) NPSNET 

P3 

P1 

P2 

 

Fig. 8 – Regionalisation of the virtual world 
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Restricting message passing in favour of achieving scalability was actually attempted 
in the first instance by NPSNET. In NPSNET regions of the virtual world were 
divided into hexagonal areas, with artefacts in the same (or bordering) regions capable 
of exchanging messages (figure 8.ii). Hexagonal areas were chosen as there are at 
most three bordering areas (as opposed to four when using squares). This provided 
less area of the virtual world (and therefore choice) when disseminating messages as 
artefacts reach area borders. For example, when a boundary change occurred it may 
be best practise to disseminate messages within multiple areas to lessen ambiguity 
over which artefacts should receive which messages. 

When considering message dissemination techniques via the use of regions the size of 
the regions becomes important for dictating the type of interaction possible within a 
virtual world. A region must be of sufficient size as to ensure players have the ability 
to engage in gaming scenarios in one region before entering another region [102]. 
When a player traverses a region boundary a region’s membership must be updated 
(identify a region a player belongs to). Determining a region size that is suitable for 
all types of player interactions in a virtual world may not be possible. For example, if 
region size is decided when considering the top speed of a fighter aircraft then the 
presence of soldiers travelling on foot may give rise to unnecessary message exchange 
between foot soldiers. If region size is more suited to foot soldiers then a fighter 
aircraft may traverse region boundaries with such frequency that region membership 
may not be resolved in a timely fashion (traverse a region in less time than it takes to 
realize regional membership changes resulting in an inability for fighter aircraft to 
engage in gaming scenarios). 

Auras and regions have their advantages and disadvantages. Regions do not afford the 
accurate degree of interaction as auras appear to provide on a per-artefact basis, but 
the implementation overhead for regions is much lower than auras. This is because 
there is no discovery stage required when deciding upon the appropriate message 
recipients in the region approach. For example, an IP-multicast address may be 
associated to each region and as long as an artefact can realise which region they are 
in, they can subscribe and multicast to the appropriate multicast address. On the other 
hand, aura overlap must be detected before message recipients may be realised in the 
aura approach. This will require an initial protocol step with the sole purpose of 
identifying appropriate message recipients. This proved an expensive step in practice 
and can severely limit the scalability of aura based approaches. 

Other early works continued the exploration into spatial sub-division exhibited first 
by NPSNET and then in a different manner by MASSIVE. For example, SPLINE 
introduced the notion of locales which assumed a much more independent view for 
each spatial sub-division [45] [46]. Each sub-division may be described within its 
own co-ordinate system, with the appropriate transformations matrices to allow 
transition from one locale to another. BrickNet uses a more descriptive mechanism 
(not necessarily based on virtual world geography) to allow related artefacts to be 
grouped together and become visible to each other (associated to different virtual 
environments) [47]. 

 

3.2  Persistent Worlds 
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The virtual worlds described in the previous section do not provide persistent 
environments. That is, they do not exist as some simulated persistent geographic 
location at some known, accessible, address. Persistent virtual worlds allow 
participants to enter a virtual world that provides a degree on continuity; artefacts may 
be created and persist over periods of time and the results of events on artefacts may 
persist. For example, a participant may purchase a virtual car, drive their car to the 
end of a virtual road, return some days, months or even years later and retrieve their 
car. Of course, someone else may have procured the car and driven it elsewhere in the 
meantime, but the continuity provided by persistence of artefacts is a factor that aids 
in classifying these virtual worlds.  

Public access persistent virtual worlds available over the Internet present vendors with 
a commercial opportunity. The computer games industry has been able to use these 
worlds to generate revenue in a number of ways: pay-per-play (often the client 
program is free, or sold for a small one off payment, with subscriptions required to 
allow players to participate) (e.g., [48], [49] [50] [51]); artefact sales (participants 
trade artefacts with commission gained on sales) (e.g., [52]); client extensions (client 
side extensions are sold that allow access to additional virtual world areas/storylines) 
(e.g., [53] [54]); land sales (areas of the virtual world are sold to participants) (e.g., 
[55]). As these gaming arenas grow one may envisage economic structures 
developing not too dissimilar in variety to those that exist in the real world [56]. This 
area of online gaming has grown from an insignificant financial element of the games 
industry in the late 1990s to become a multi-billion dollar industry in its own right as 
of 2008 [57].  

Persistent virtual world implementations are server based, allowing vendors to 
regulate the provision of ever evolving alternate realities to maintain player interest 
and, most importantly, restrict participation to subscribed players. Player consoles 
connect to a server that provides players with access to a virtual world. Typically, a 
player’s console holds a sub-set of game state with players informing each other of 
their actions via the exchange of messages between consoles. Such communication is 
achieved via a server, allowing the regulation of player interaction and game state to 
be recorded and stored onto a persistent medium if required. As revenue is generated 
on a per-player basis, the more players that can be supported by a virtual world the 
more revenue may be generated. Therefore, scalability of a server, in terms of player 
numbers, is of great importance to ensure commercial success.  

To satisfy the demand for processing resources, clusters of servers are employed to 
cumulatively maintain game state and manage player interactions. The additional 
processing resources required to support an increase in player numbers is satisfied via 
the addition of servers to a cluster. This approach to server cluster configuration will 
be familiar to any developer working with scalable service solutions found in almost 
all Internet applications; utilise a collection of geographically co-located nodes 
organised into a cluster that cumulatively support online services (e.g., search engines, 
e-commerce, enterprise information portals). Such nodes are standard computers in 
their own right, and may operate as service providers independently of each other. 
Such computers are general purpose and not necessarily tailored for high performance 
multi-processor solutions, making them a cost efficient approach to server side 
scalability. 
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Fig. 9 – Classic n-tier server side solution. 

  

Figure 9 provides an overview of a typical server cluster solution for providing 
scalable online worlds. Although a simplified view, this will suffice for descriptive 
purposes. The load balancer ensures players are directed to an appropriate server that 
may satisfy their service requests (e.g., updating avatar appearance or location). The 
application logic is where user participation is enacted and overall governance of the 
virtual world occurs (e.g., avatars fighting, trading artefacts between users). Artefacts, 
including player’s avatars, which populate the virtual world, together with their 
current state are stored in the data store tier and retrieved as and when required by the 
application tier. Updates made to persistent artefacts in the application logic tier must 
be registered in the data store tier to ensure continuity of the virtual world. 

Vendors of commercial persistent virtual worlds do not tent to describe in detail the 
techniques used to achieve scalability at the server side (which is to be expected for a 
commercial enterprise in a competitive market). However, there is an article 
describing EverQuest’s approach in general terms [58]: a mixture of regions and 
duplicate worlds with each duplicate world supporting approximately two to three 
thousand players with each world divided into regions based on the geography of the 
virtual world (the term used in the literature for duplicate worlds is shards). As 
regionalisation is associated to virtual world geography, this approach is closely 
related to NPSNET’s approach of sub-dividing the virtual world geography. A 
duplicate world is itself supported by a cluster of servers, with regions used to aid in 
allocating the processing requests originated from player actions amongst such servers 
as and when required. Due to the similarities in game play and the existence of 
duplicate worlds; one may assume that all commercial approaches to implementation 
of distributed player load across the application tier to be similar. There is no player 
interaction allowed across duplicate worlds although players may pass from one 
region to another. 

Duplicate worlds and geographic regionalisation present a three step approach to 
identifying localised game play: (i) players do not interact across different duplicate 
worlds; (ii) players do not interact across different regions; (iii) players interact 
intricately with other players they specifically target (e.g., click on with mouse). This 
approach provides two distinct forms of interaction: (i) a general, viewing type style, 
where players can see the actions of others in their region (assuming appropriate line 
of sight); (ii) an intricate manner where players directly interact with each other in a 
user directed way. The latter form of interaction requires consistency to be greater as 
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ordering of events are usually crucial in determining the outcome of an intricate 
gaming scenario (the server must resolve player interaction). The consistency can be 
weaker in the general style of interaction as summary information could be 
propagated between players. For example, in a fight between two players in a virtual 
world attacks must be regulated (e.g., ordered, not lost in transit) between engaged 
players (e.g., spells, hitting, shooting) to provide an outcome (e.g., decreased health, 
loss of inventory). However, for players watching a fight between other players there 
is only a need to view a series of fighting moves and the end result (that may or may 
not reflect the actual fight moves as enacted between the fight participants). 

Initiating intricate play is via a handshake protocol at the start of an intricate 
interaction request (specifics vary slightly across commercial implementations, but 
there is a need for player identification made by the server to initiate such interaction). 
In the case of player P1 attacking player P2, the server will poll P2 to ensure that 
intricate interaction may commence. This is to ensure P2 is actually in a state to which 
it can respond appropriately and, possibly carrying out some check to ensure P2 is not 
at a disadvantage due to inconsistencies between P1 and P2’s views of the virtual 
world. This is especially the case if P1’s actions could have an important impact on 
game play if not responded to in a timely manner (e.g., P1 attacking P2). This protocol 
may be manifested as part of game play itself to ensure players are fully aware of a 
requested interaction, (e.g., a request is provided to P2 that may be declined or 
accepted – either at a player’s discretion or transparently by a player’s console based 
on local game state).  

An interesting observation in implementation similarities between asymmetric 
ordering and intricate interaction may be made. Clearly, commercial solutions are 
relying on sequencer (the server) to regulate intricate interaction (ordering of events) 
between players. Indeed, direct communication between player consoles is to be 
avoided in this respect; therefore no leader election protocol is required between 
player consoles if a server fails. If a server fails one may assume failover may be 
employed (but there have been instances that show this may not be the case [69]). The 
importance of allowing server failover specifically for persistent virtual worlds has 
recently been recognised as a serious problem and is an aim in Sun Microsystems’ 
Darkstar Project [70]. This project looks to hold some promise of bringing a general 
purpose middleware platform to market that eases the creation of online persistent 
virtual worlds. 

 

3.3  Synchronization 

In section 2 gaming scenarios are discussed with reference to the model used for 
describing distributed computation. This approach was shown to allow a degree of 
reasoning when considering the validity of gaming scenarios. As mentioned earlier, 
this model is primarily used in the domain of fault-tolerant computing where 
assurances of a system’s correctness are paramount and every effort is taken to ensure 
message reliability and delivery requirements may satisfy such assurances. 
Unfortunately, probably due to the lack of timing considerations in the model and the 
failure of ISIS to provide an environment of any “useful” scalability, research into 
message ordering and reliability protocols for online gaming held little interest to the 
fault-tolerant community. Instead, the research community that has proceeded to 
make progress in this area has been the parallel and distributed simulation 
community. 
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Although the end goals of these two research communities are dissimilar, there are 
similarities between work carried out in the fault-tolerant community and the parallel 
and distributed simulation community. They share the same basic model of events, 
messages and processes and the same concern for preserving causality. However, the 
parallel and distributed simulation community does not contend with the same 
rigorous requirements associated to reliable systems (e.g., total ordering, atomic 
multicast, virtual synchrony). For this fact alone, their algorithms will undoubtedly 
have a lower message passing overhead and less of a delay between receiving a 
message and delivery of a message, providing more opportunity for scalability than 
that witnessed by utilising ISIS in DIVE.  

Synchronisation is the term used to describe the end-goal of algorithms designed 
within the parallel and distributed simulation community. There are two basic 
approaches described in the literature to achieve synchronisation [59]: (i) conservative 
– messages are received but delivery delayed until delivery guarantees can be 
satisfied; optimistic – messages are delivered as they are received with a possibility 
that messages may become “undelivered” and then “re-delivered” to correct violations 
of delivery guarantees realised at a later date (i.e., when receiving a logically stamped 
later message).  

Work on conservative approaches can be traced back to the 1970s (e.g., [60] [61]) and 
appear at a similar time to Lamport’s paper on logical clocks (however, Lamport’s 
interest in this area reaches back to the 1960s). One may assume conservative 
approaches share a great deal in common to the approaches carried out in the fault-
tolerant community as delayed delivery is utilised. Therefore, the developers of 
virtual worlds find the optimistic approach more inviting than conservative 
approaches as messages may be delivered without delay, favouring real-time 
requirements (e.g., [62]). In addition, the virtual world may be capable of a degree of 
prediction (e.g., dead-reckoning), allowing the application developer to either pre-
judge certain ordering irregularities or hide them in gaming scenarios when they occur.  

The Time Warp [63] mechanism is a well known optimistic approach. In simple terms, 
when a process receives a message with a (logical) timestamp lower than a message 
that has previously been delivered, delivery of such a message (or messages if there 
are more than one) are rolled back and re-delivered together with the recently 
received message in the appropriate timestamp order. To limit rollback to an 
appropriate level there is an identification placed on the length of history possible for 
rollback. 

Conservative and optimistic approaches have been used to attempt synchronisation in 
gaming scenarios with Ferretti and Roccetti providing a convenient discussion of the 
state-of-the-art together with some interesting comparisons made between the 
techniques [64]. Optimistic approaches tend to favour scenarios that can provide a 
degree of determinism, and may not be suitable for intricate interaction where roll-
back is not feasible. For example, when two players are engaging in intricate 
interaction in a persistent virtual world (as described in 3.2) the notion that some 
results may be rolled back may deter from an appropriate gaming scenario. In addition, 
the overhead of roll-back may provide a processing burden that is detrimental to the 
overall performance of a virtual world if it occurs sufficiently often enough. This may 
outweigh the alternative approach of delayed delivery found in conservative 
approaches. The decision on the approach used by a developer is not always 
straightforward.   
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Ferretti and Roccetti have pioneered a number of optimistic synchronisation 
techniques specifically for use in online gaming. A series of works clearly 
demonstrate the scalability of their optimistic approaches for use over the Internet 
[106] [108]. Their schemes are based on loose synchronisation of physical clocks 
[109] and the ability, through negative acknowledgements, to discard events 
considered “obsolete” in the virtual world. As their approaches are optimistic they 
deliver messages as they are received, gaining scalability by preventing the sending of 
some messages due to recognition of the obsolete events with which they are 
associated.   

Including wall clock time (as opposed to logical time) when attempting to gain some 
ordering guarantees for message delivery has been shown to provide value. Delta-
Causality (∆-Causality) places a limit on the degree of causality between messages by 
identifying a window of time within which causal relations are maintained [65]. 
Attempts are not made to ensure causality for messages that arrive too late to be of 
use. This approach is particularly useful for streamed data (such as voice over IP – 
VOIP), where out of date message delivery only detracts from the perceived quality of 
the output stream. [65] is set in the context of streamed media and implemented as 
Multi-Flow Conversation Protocol (MCP). The authors argue that wall clock time is a 
useful mechanism and practical synchronisation is possible (measured in 
milliseconds) given modern clock synchronisation techniques (even across the 
Internet) [66].  

The field of distributed real-time systems have provided substantial amounts of 
research in an effort to maintain causality in message delivery guarantees. The two 
basic approaches to satisfying such guarantees are via clock-driven and timer driven 
techniques. Clock driven is associated to clock synchronisation (as discussed in ∆-
Causality) whereas timer driven relies on local timers only and requires some form of 
acknowledgement message. Verissimo [67] has documented these two approaches, 
providing an interesting comparison. Probably the two most popular works relating to 
clock-driven approaches are ∆-protocol [71] family and MARS [72]. The ∆-protocol 
family and ∆-Causality are not to be confused, as each work appears quite distinct in 
the literature (∆-Causality having been attempted in the context of multimedia streams 
without acknowledgement of the earlier work associated to the ∆-protocol family). 

Other attempts at preserving causality in message delivery have been suggested that 
may be directly, or indirectly, related to modelling gaming scenarios that exploit 
application level knowledge. For example, ∆-protocol family has been extended for 
use in small scale distributed embedded systems [73] and an attempt to use 
application knowledge to “ignore” causal relations between some messages has been 
suggested [74]. Another approach proposes the notion of, and coins the phrase, 
critical causality [75]. Critical causality identifies that the only causal relation of 
concern is the directly proceeding event. For example, assume P1 receives a message 
m1 from P2 informing of event E1. P1 then receives a message m2 from P3 informing 
of event E2. P1 then generates an event E3 and disseminates this event to P1 and P2 via 
a multicast m3. In this scenario E2 and E3 are said to be critically ordered (meaning 
that m2 must be delivered before m3 where appropriate). One must note that critical 
causality is not transitive and the authors assume that critical causality is appropriate 
for modelling gaming scenarios. The authors of this approach suggest an algorithm 
which does not place delay on delivery by making sure a process sends both messages 
that share a critical ordering (in our example P1 will send m2 and m3 together). This 
algorithm does not guarantee that critical causality is maintained, but is a best effort 
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approach with experiments indicating that critical causality will be preserved 99% of 
the time in a realistic setting [75]. 

 

3.4  Load Balancing 

Assuming the approach described in figure 9, the problem of scalability becomes one 
of load balancing of resources. Furthermore, to avoid wasting resources load 
balancing must be achieved in an efficient manner (i.e., not have substantial amounts 
of overprovision at the server side). Load balancing schemes basing their approaches 
on virtual world geography for online gaming described in the literature may be 
classified as follows: (i) duplicate; (ii) distinct; (iii) partial duplicate. These 
approaches are shown in figure 10. Please note that in general purpose clustered 
solutions for scalable service provision the duplicate and distinct approaches are 
commonly termed homogenous and heterogeneous clustering respectively. 
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Figure 10 – Load balancing options 

 

In the duplicate server approach each server holds a complete duplicate of the virtual 
world containing all artefacts. A server will assume responsibility for “ownership” of 
an artefact, and inform all other servers of updates carried out on such artefacts 
(relating to messages originated at a player’s console). This requires servers to pass 
messages between themselves to ensure gaming scenarios are modelled appropriately. 
With the volume of data present on each server there may be opportunities to make 
use of dead reckoning techniques to ease the message dissemination overhead. 
Synchronisation of servers is required and so some protocol governing message 
delivery guarantees will be desirable in this approach. A detailed description of an 
implementation of this approach has been demonstrated [103] with a number of other 
works (e.g., [106] [107]) advocating this approach due to a number of possible 
benefits: fail-over – if one server fails other servers may assume responsibility for the 
failed server’s clients (as all servers have some knowledge of cumulative game state); 
scalability – increased client numbers is satisfied by increased server numbers; 
responsiveness – local servers may satisfy the demands of local clients.  

In the distinct server approach different areas of a virtual world are maintained by 
different servers (possibly defined in a similar manner as regions in NPSNET). There 
is minimum inter-server communications and a single gaming scenario is executed on 
a single server. The main benefit of this approach is that consistency of interaction 
becomes an issue to be resolved between a single server and associated player 
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consoles. There is no need for inter-server communications to model interaction as 
synchronisation between duplicate servers is not warranted to model a gaming 
scenario. However, a limiting factor is the problem of “full” regions: there is a 
processing limit dictated by server resource availability on any one particular region. 
For example, in Second Life this manifests itself as areas been incapable of 
supporting a level of activity in the virtual world defined by server resources [76] (this 
is actually on a per duplicate world/shard basis and manifests itself as disjoint islands). 
Full regions exhibit themselves in the virtual world as “crowding”. Unfortunately, 
crowding is not an uncommon occurrence as players tend to gravitate towards popular 
events in virtual worlds. In addition, there is a requirement to handle process resource 
handover between servers when players move from one region to another. This 
problem in itself has warranted a number of research papers (e.g., [76] [77]) 

The partial duplication approach is similar to the duplicate server approach apart from 
the fact that not all the servers are aware of all virtual world interactions. Localised 
game play is used to identify where synchronisation requirements need to be satisfied 
across servers. In essence, this approach lies between duplicate server and distinct 
server approaches. In this approach regions may be allocated to servers dynamically 
at run-time to alleviate the “full region” problem found in the distinct server approach. 
Alternatively, load balancing may be achieved by players being assigned to servers 
and full synchronisation between servers is required to model interaction 
appropriately, possibly using auras as a basis of determining interaction. This 
approach has been demonstrated successfully in the context of auras identifying areas 
of interest to aid in dictating which servers should enact inter-server communications 
to satisfy gaming scenarios [78] [79]. 

In section 3.1 the aura and region approaches were described and in section 3.2 
Everquest’s approach to identifying localised game play was described. The reader 
should by now recognise that Everquest (and similar commercial products) use 
regions as a form of load balancing. The identification of localised game play is 
conveniently used to identify load distribution across the application tier and 
implement the distinct server approach. Unfortunately, commercial solutions, like 
Everquest, do exhibit the crowding phenomenon resulting in exhaustion of server 
resources and full regions. Left unchecked, the effects of crowding may result in a 
slowdown in game play or, in worst case scenarios, a complete inability to enact 
player interaction. This may be considered the same problem of consistency 
management that the distinct server approach is attempting to alleviate: without 
regionalisation the virtual world itself (single region) may become populated by a 
sufficiently large number of players as to make the consistency problem 
unmanageable. In commercial solutions, the number of players allowed into a 
duplicate world is rarely above 2,500 to offset the problem of resource exhaustion; 
better to prevent failure in player interaction than allow it. In essence, players load 
balance themselves by choosing duplicate worlds to enter and are barred from 
entering those duplicate worlds that are “full” or not available due to maintenance 
issues. 

In the presence of server clustering, there is an opportunity to alleviate the crowding 
problem by dynamically associating processing requirements generated by player 
actions during runtime. This takes the form of load balancing player activities across 
servers with respect to regions and assumes the partial duplicate server approach. The 
literature provides a number of solutions to load balancing across server clusters 
suitable for MMORPGs. Regions may be reduced in size by sub-dividing them further 
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(allocating servers to these additional sub-divisions) [80]. Other methods distribute 
responsibility for region execution to a particular server at runtime based on the 
volume of players in a region [81], while other methods dynamically resize regions 
during runtime [82]. Such approaches may be fine tuned further to ensure that the cost 
of moving responsibility for execution to another server is minimised [83]. 

EverQuest also describes runtime allocation of resources from within small clusters of 
servers responsible for a duplicate virtual world. Although no great technical detail is 
provided on how this is achieved [58], the premise of this approach appears to be 
player driven: when player enacts a particular action (e.g., opening a door, entering 
into battle) processing resources are allocated to satisfy the increased processing 
requirements. 

Commercial approaches aside, there are a number of other works in the area of 
scalable server side solutions that may be appropriate. A notable contribution is work 
carried out by IBM. IBM has produced region based services that make use of 
standards such as Web/Grid services [84]. Regions are again used in this work, 
providing a platform that would allow a similar approach to implementation than 
would be expected in the commercial approach already discussed. Other works (e.g., 
RING [85]) do employ multiple servers, allocating regions of virtual worlds to 
different servers, providing a similar approach to scalability (regions to servers) as 
advocated in the common commercial approach. Recently The Darkstar project from 
Sun Microsystems is tackling the scalability issue without dependency on duplicate 
worlds and instead advocates the scalability problem be solved by distributing tasks 
over a collection of servers (irrelevant of geographic location of the world). 
Experimental results are not yet available demonstrating scalability, but this is a 
project that should be monitored for results in the future [70]. 

 

4. Core Problems 

There has been a large spectrum of work that is directly or indirectly related to 
scalable online gaming. In recent years the volume of research related to this area has 
increased rapidly; many papers on scalability have appeared in the annual ACM 
SIGCOMM workshop on Network and system support for games (NetGames), an 
excellent resource for the latest developments in the area. Many other works have 
appeared sporadically in a variety of other conferences, ranging from graphics to 
networking. Correlating such work is a non-trivial task as useful knowledge related to 
online gaming research may be found in a number of different genres not necessarily 
produced by researchers primarily concerned with online gaming (e.g., distributed 
simulation, fault-tolerance, real-time systems, streamed multimedia, human computer 
interaction). The different genres within online gaming themselves produce their own 
focussed works (e.g., non-persistent first person shooter [86] [113], streamed content 
for game artefacts [76]).  

Considering the wide spectrum of research activity associated to online gaming one 
must not lose fact of the basic requirements that need to be satisfied when 
constructing large scale online gaming worlds. We can structure these requirements 
into three logical steps that must be achieved to make large scale online games a 
reality. In their simplest abstraction these basic steps are described as follows: 
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1. Determine, based on virtual world state, which artefacts are and are not 
interacting 

2. Enable required message dissemination between nodes in a network (e.g., 
servers, player consoles) while prohibiting needless message dissemination 
between nodes 

3. Manage message delivery to attain appropriate synchronisation to afford 
intended gaming scenarios 

 

Each of these steps is now considered in turn, concentrating on a number of open 
questions that each requirement highlights. 

 

4.1  Where am I? 

Primarily, virtual world geography is used to determine which artefacts should be 
interacting. This is not as simple as defining a virtual world distance within which 
interaction between two artefacts becomes possible. For example, when a virtual 
world is divided into static regions an artefact close to a region boundary may actually 
be closer to artefacts in neighbouring regions than artefacts in their own region. The 
aura/nimbus approach appears more appealing as this issue does not arise. 
Furthermore, the aura/nimbus model allows areas of interest to be specified on a per-
artefact basis (allowing for varying types of artefacts to express varying degrees of 
influence and interest). Unfortunately, this requires additional processing 
requirements to determine what interaction is occurring at any one point in time. The 
only option at this point is to employ a real-time collision detection algorithm to 
identify such interaction; a substantial processing overhead if in excess of a million 
artefacts exist at any one time in a virtual world [104]. Furthermore, this is a 
distributed computation in itself to be carried out across multiple nodes. How does 
one achieve such a service in a timely manner [102]? 

In commercial solutions the problem is tackled by using regions and simply 
constructing the virtual world to hide the hindrance of interaction found in the static 
region approach. For example, constructing a large wall preventing players from 
seeing what is within other regions is a simple, if not elegant, solution. Even with 
regions and an appropriately constructed virtual world the process of moving from 
one region to another still requires processing time to allow a server cluster to allocate 
processing resources effectively. Basically, a player must be slowed down in some 
way when process resource allocation is changed at the server side due to region 
changes. Maybe the player can ride on a train between regions, or maybe a door 
between regions takes time to open. Either way, some game play element must be 
seamlessly incorporated into a virtual world in a less as intrusive way as possible. 
When in excess of a few million players are changing regions frequently how can 
timely requirements be satisfied? 

A major drawback with static regions is the possibility that they may become full, 
hindering player participation. Research has been associated to this problem, with 
regions been able to spread their processing resources across multiple server nodes if 
required. However, this may be more process intensive and, therefore, time 
consuming to achieve than simply allowing inter-server message passing in the first 
place and distributing load on a per-player basis between servers [78]. If this is the 
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case, what trade-off must be made between the provision of a free roaming virtual 
world that players enjoy and the strictly regulated transition of region boundaries? 

 

4.2 Who to tell? 

Assuming the non-trivial problem of determining where all players are in a virtual 
world is solved, identifying which events should be propagated to which players 
needs to be addressed. Once a single oracle type service that identifies interaction in a 
timely manner exists, this information then has to be implemented using some 
(approximated) group membership protocol to ensure messages may then be 
disseminated appropriately across nodes in a network to allow interaction. The less 
accurate the group membership protocol is the more needless messages will be sent. 
However, the more accurate the protocol is the more time, and message passing, will 
be required to achieve identification of message recipients. During runtime, how can 
such a trade-off be monitored and tailored to guarantee that player expectations 
associated to gaming scenarios are to be achieved? 

The simple solution would be to send all messages to all artefacts within a particular 
region or to send messages to all artefacts that a player may influence. Unfortunately, 
this solution is not ideal, especially if a large number of players are present and player 
consoles receive messages that they are simply not interested in. Witnessing players 
move around a virtual world is required to aid immersion, but just because a player 
can view other players does not necessarily indicate that such a player is interested in 
all events generated by visible players. Therefore, one may envisage that all messages 
are not to be treated the same. For example, assume a player, say P1, generates two 
events, say E1 and E2, and another player, say P2, is only interested in E2 but not E1. A 
group based system modelling this approach will require two distinct groups (message 
dissemination of E1 and E2 is handled separately). Add another player, say P3, who is 
interested in E1 and E2 and not only do we have another group, but there exists a 
causal relationship that may be maintained for P3’s view of P1’s actions. This may be 
modelled via overlapping groups, but the more groups we add the more the processing 
burden increases and the more time is used up determining message recipients. At 
what point does group management become so burdensome as to hinder interactivity? 

 

4.3  How to inform? 

Consider a virtual world within which the mechanism of realising player locations has 
been achieved and the identification of suitable message recipients accomplished both 
in a timely manner. All that is left is to enact message delivery in a manner that 
satisfies the ordering and reliability guarantees that satisfy the desired player 
interaction requirements. Such ordering and reliability guarantees will be based on the 
relevance of messages, and their associated events, to players. For example, intricate 
interaction between two players will require sufficient ordering and reliability 
guarantees to ensure game play scenarios progress appropriately. A third player may 
still be interested in viewing this progression in game play, but may be indifferent to 
the actual details, possibly requiring summary type information using aggregated 
messages (e.g., which player won a particular battle). If this is the case then how are 
aggregated messages related to the ordering and delivery guarantees of the messages 
they represent? What type of protocol could manage such relationships between 
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messages when different recipients have differing ordering and reliability 
requirements for the same set of messages? 

Treating all messages with the strongest deliverable and reliability guarantees possible 
has been shown to be problematic when attempting to achieve scalability (ISIS in 
DIVE); yet modern commercial persistent virtual worlds require something similar for 
modelling intricate game play. The existence of a server can ease the ordering burden 
(utilising asymmetric approaches), but such a server must provide some form of 
failover to ensure a robust environment. An added complication occurs when 
attempting to avoid resource exhaustion, requiring multiple servers to satisfy message 
ordering and reliability guarantees to model a single gaming scenario. How does one 
balance load efficiently yet minimise time consuming message delays that are the 
result of spreading load over multiple servers? How can failover be achieved while 
ensuring real-time requirements are satisfied? 

 

5. Conclusions and Further Work 

Engineering a scalable virtual world is a non-trivial task that requires a broad range of 
skills from different areas of computing science. Although commercial virtual worlds 
exist and have been successful (accounting for over $1 billion in revenue in the USA 
and Europe by 2006, not including Asia [90]); these worlds can become ultimately 
more successful. This statement is made as the research accomplished so far, although 
admirable, needs to expand and become inclusive of a number of fields of computing 
science. 

In the first part of this chapter gaming scenarios are described using the common 
model for identifying progression in a distributed computation. This provides a 
convenient and readily understandable description of possible gaming scenarios. A 
number of errors in gaming scenarios were highlighted that could occur if progression 
of a distributed computation is not regulated in some way. An attempt is made to 
relate the problems in gaming scenarios to the more general problems found in 
distributed computation. This allows a reasoned discussion on what is and what is not 
possible when developing online games and the possible research direction for 
addressing the problem of ensuring appropriate gaming scenarios are achieved. This 
highlights the advances made in the distributed systems community as worthy of 
serious scrutiny from the online games developer when attempting to create 
appropriate gaming scenarios for large scale virtual worlds. 

In related work a number of academic, military and commercial efforts are listed that 
have made progress towards the current-state-of-art for scalable online gaming. 
Works are described that may provide the essence of a number of solutions for 
advancing the state-of-the-art of scalable online games. This is an important issue to 
address, as there are a number of research efforts that can make significant 
contributions to the development of large scale, highly interactive, virtual worlds yet 
are rarely considered in the gaming literature. 

After considering related work, a section is provided that attempts to highlight a 
number of significant issues to be addressed if advancement in large scale, highly 
interactive, virtual worlds is to be made. This is represented in a simplified, three 
stepped approach that appears obvious at first glance, but conceals non-trivial 
problems that provide a focus for the online gaming researcher. A series of questions 
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are posed without answers to bring to the fore a number of research issues. However, 
these questions are not exhaustive and may find their solutions by combining 
solutions highlighted in the related work section of this chapter. 

This chapter is now concluded with a number of research problems that go beyond the 
basic problem of scalability while maintaining highly involving gaming scenarios.  

 

5.1 Advanced interest management 

Identifying which artefacts are interacting is a non-trivial problem, however, one can 
envisage ever more elaborate schemes for actually defining and describing the 
influence and interest associated to such interaction. Interaction in the real world may 
consist of a highly complex series of events and creates complex relationships 
between artefacts which may last sometime (e.g., parcel in plane makes plane heavier). 
Describing the manner of interaction between participants requires a language capable 
of expressing a variety of techniques. Although some languages have been proposed 
(e.g., [91]) they tend to be limited in their expressiveness [28]. Existing solutions use 
fixed interaction patterns (server based or uses direct communications between user 
consoles). Varying this choice at runtime has never been considered. Judiciously 
exercising a choice regarding such patterns may be the key to achieving interactivity 
and scalability. 

To accommodate a wide variety of interaction requirements, an interest management 
scheme must combine location and discovery services with interaction techniques 
from a variety of gaming genres:  

 

• Discovery – given the scale of a virtual world there is a need to provide users 
with the ability to find scenarios they wish to participate in. 

• Abstract – allow users to exert far reaching degrees of influence on a virtual 
world, say moving an army of 20,000 soldiers, via minimal effort (e.g., a few 
mouse clicks).   

• Realistic – to heighten the sense of realism users interact with the each other 
in a manner similar to that of the real world. 

 

Envisage combining the expressions of interest exhibited in discovery, abstract and 
realistic interaction into a single interest management solution. For example a 
discovery service may utilise knowledge of realistic and abstract interaction services 
to allow a player to locate an appropriate gaming scenario (e.g., finding communities 
of players collaborating on a task). Developing a single interest management solution 
for abstract and realistic services will provide a highly interactive virtual world for 
participants and raises interesting questions. For example, how does a single player’s 
management of a whole city (abstract services) influence the realistic services 
supporting interacting players inhabiting such a city? 

The area of research concerned with scalable message oriented middleware (MOM) 
may offer some insight into this challenging problem. In MOM systems messages 
may be propagated between sender and receiver based on the subject matter of a 
message, rather than the identity of the sender. To aid in this MOM systems can 
provide scripting languages that allow receivers to express their interest in particular 
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message types. This approach has already been experimented with [105] [79] with 
some success. However, apart from these works the tailoring of MOM systems for use 
in highly interactive large scale virtual worlds is rarely considered. 

Work by Minson and Theodoropoulos has tackled the problem of interest 
management in a novel way and provide further insights into gaining advanced 
interest management systems of the future. Their work centres on the investigation of 
event dissemination via push and pull methods of inter-node communications [111]. 
They show by considering interest management from the “bottom-up”, intricacies are 
present that affect performance that are often hidden when solely concentrating on 
interest management as purely an in-world problem. They demonstrate their 
approaches quite successfully via first person shooter architectures using cell division 
to attain scalability [112]. 

 

5.2 Standardisation and inter-organisational issues 

With the commercialisation of virtual worlds a practical engineering solution to 
scalability must consider two additional issues: 

 

• Inter-organisational – delivering a commercial solution to end users requires 
the cooperation of a number of different organisations (e.g., content providers, 
hosting provision, Internet service providers). 

• Middleware – to ensure development costs remain acceptable, a commercial 
solution must be constructed using readily available middleware tools and 
services (e.g., security, reliability, persistence, scalability).  

 

An example of inter-organisational complexities is highlighted by the diagram in 
figure 11, taken from IBM [92]: A games software house produces a game that is 
made available by some hosting entity supported by a number of service providers 
that cooperate to deliver a gaming experience to players via some, possibly propriety, 
gaming device. This inter-organisational approach results in service provision that 
crosses organisational boundaries, requiring the emulation of electronic equivalents of 
contract based business management practices. Service level agreements (SLAs) 
provide an opportunity to define such contracts in a way that inter-organisational 
information sharing may be defined, monitored and enforced. 
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Fig. 11 – Business value chain for online gaming 
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The cost of developing distributed applications is reduced if existing middleware may 
be exploited efficiently by a developer. For example, by using an implementation of 
the J2EE component architecture, say JBoss [93], a developer may engineer a scalable 
server side application. Services such as transactions, persistence, security, and load 
balancing may be incorporated into an application by a JBoss application server with 
configuration guidance from an application programmer.  

Inter-organisational and component middleware research has focused on e-commerce 
client/server style interactions (e.g., stock purchase): there are no J2EE component 
type architectures for online game developers. Work carried out by IBM to 
demonstrate Grid technologies does provide introductory work in this area [84] [94] 
[95] and Sun’s Darkstar Project may well provide such a platform in the future [70]. 
However, the use of SLAs and standard middleware may not be sufficient for 
modelling advanced virtual worlds. 

At the moment virtual worlds are quite disjoint environments. For example, the 
commercial model dictates that whatever is achieved in World of Warcraft is non 
transferable to other vendor’s sites (vendors do not wish to encourage departures from 
their own worlds). However, with the advent of standardisation and SLA governed 
interaction, the future may provide a more unified vision of a virtual world allowing 
artefacts to be seamlessly transferred between vendors. Ultimately, this may result in 
a single virtual place where vendors primarily become content providers as opposed 
to world developers. Artefacts currently have value in commercial virtual worlds, and 
are regularly traded for real money. However, once the virtual world becomes as 
accessible and standardised as the modern day Internet then it will be content that will 
be the most valuable asset. 

The ease of access and standardisation of virtual worlds together with associated 
game engine technologies may yield exciting possibilities. For example, a player may 
purchase the latest car from one vendor and pay another vendor to race this car around 
a purpose built arena in a virtual world. Another player may purchase an aircraft and 
fly over the race track and witness the other player driving their car. Should we let the 
players interact? Would they want to? Could gaming scenarios grow from disjoint 
gaming scenarios? Would they make sense? Could they be regulated? Any number of 
questions may be raised. Linden Labs do allow user derived content development in 
their Second Life product [55]; however, this is a different proposition to allowing 
Activision to create the next Gotham Racing in the same virtual world as Rockstar’s 
Grand Theft Auto. Even in the arena of Second Life, where products usually cost less 
than $1,000 there has been legal issues raised [96]. Consider what legal issues may be 
raised if a company invested over $30 million (typical cost of top selling game title) 
in such a world and that investment came to be worth in excess of $400 million (sales 
value of Grand Theft Auto 4 in first week of release [97]). 

 

5.3 Content Management 

To ensure financial success in commercial virtual worlds, player interest must be 
maintained over prolonged periods of time (measured in years). Therefore, a virtual 
world must continue to provide new and challenging scenarios to encourage user 
participation. This can be achieved by periodically introducing new content (e.g., 
artefacts, rules, stories, areas) and ensuring all content exhibits a degree of persistence 
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to provide a heightened sense of continuing community. In the previous section the 
discussion centred on the content ownership and management of gaming scenarios 
created by multiple vendors. However, a more difficult problem may be the actual 
maintenance and continual improvements to virtual world content. Even now, many 
commercial virtual worlds are struggling to maintain in excess of 10 to 20 million 
separate items of content. The prospect of evolving such artefacts and gaming 
scenarios into ever more elaborate environments seems an insurmountable problem. 

Faced with the problem of content management, companies are restricted to manual 
updates by their own developers or by players. Companies may have good reasons to 
manage content: coherent storylines and directing the overall look and feel of a 
gaming scenario. However, this is a burdensome task when millions of artefacts exist. 
Therefore, an alternative approach has arisen where players are encouraged to create 
such content, albeit at the expense of a company’s ability to direct gaming scenarios 
[55].  

When companies manage content the use of client side updates coupled with additions 
at the server side is common (e.g., [53] [54]). Updates to client’s software are an 
additional revenue stream for a company. Such updates are achieved by the company 
releasing “expansion packs” (software updates) which the user must purchase to 
participate in new gaming scenarios. To ensure existing users may continue to 
participate without “expansion packs” the company isolates new scenarios from 
existing content. This is achieved by adding a new area to a virtual world. In reality, 
existing content is not evolved, but increased in the form of additional areas. 

Second Life [55], by Linden Labs, allows player content creation with a financial 
revenue model based on real-estate and trading: the main type of revenue for Linden 
Labs relates to the purchase of land and paying of ground rent. An innovative aspect 
of Second Life is the ability players have for creating content. Such content may then 
be traded between users. No client side updates are required to access new content 
(beyond the original downloading of the client game software itself). A scripting 
language allows artefacts to be instilled with behaviour, allowing players to provide 
their own virtual world scenarios. This approach provides Second Life players with 
the most powerful content creation tool available today for online virtual worlds with 
players providing a wealth of content. Content creation via players has been achieved 
before Second Life in Active Worlds [115], but it is Second Life’s scripting language 
that provides the dynamic content required to create gaming scenarios. However, even 
Second Life’s approach has its limitations. The following example is used to highlight 
such limitations. 

In a virtual world that already allows players to navigate ships between ports, there is 
a desire to evolve an economic market by introducing “trade” and “cargo”. Once 
introduced, players will be able to trade between ports via ships carrying cargo. There 
is a requirement to modify the artefact ship to enable the carrying of cargo. The new 
concept of trade will require modification to the rules governing the virtual world 
itself. Ports will assume the role of trade hubs and must be enhanced to recognise their 
role in trading. 

In this example it is not sufficient to just add content, but existing content (ships, 
ports) must also be altered to enhance them with the ability to participate in trade. 
This requires updates in the data-store tier (e.g., amount of cargo that a ship can carry) 
and updates in the application logic tier to enhance functionality (e.g., unload/load 
cargo) – see figure 9. Furthermore, other artefacts not mentioned in the example must 
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be designated as cargo. This in itself will require updates to other artefacts in the data-
store tier (e.g., weight, size, and owner) and additions in the application logic tier (e.g., 
in transit, set owner, and change value). Finally, the concept of trade itself is quite 
fundamental and not easily captured within one single artefact, requiring recognition 
in the rules governing a virtual world (e.g., supply, wealth, and exchange).   

The core research problem is the need to ease creation and amendment of existing 
program code together with changes in persistent data representations to allow far 
reaching evolutionary change in virtual worlds. This has to be achieved by limiting 
manual intervention (automating change) without disruption to the virtual world 
(runtime safe content management).    

Existing approaches to company and player derived content evolution can’t realise the 
trading example as existing content cannot be changed appropriately to accommodate 
new content. In Second Life, propagation of change from one artefact to another is 
limited and inhibited between artefacts belonging to different owners. Even using 
such an inhibitive approach Second Life has been plagued by problems (failure of 
simulation due to erroneous scripts [98]). The more controlled approach used in 
company driven content change has faired better in terms of virtual world correctness 
(but failures still happen [99]). This safety has come at the expense of limiting 
existing content updates to simple bug fixes and only allowing new content distinct 
from existing content. Fundamentally, all existing approaches severely limit content 
evolution in favour of safety and the programming burden is immense. 

A new code fragment representing an artefact may be manually created. However, the 
adaptation of the system to accommodate the new artefact should be sufficiently 
automated to lessen the development burden and ensure safety. One avenue of 
exploration that may be useful for engineering evolutionary change in virtual worlds 
is reflection. One use of reflection is to allow the self-reorganisation of a system. In 
essence, reflection could be employed to enable self-reorganisation of code fragments 
and associated attributes to allow far reaching evolutionary change in a safe manner. 
Work at Lancaster University in the UK identified the role that reflection may play in 
online game construction for satisfying scalability, persistence and responsiveness 
requirements [110]. Reflective middleware platforms may play a significant role in 
the future of server side virtual world development. 

In the end, a virtual world that dates and is unable to keep pace with player 
expectations will eventually become financially unsustainable. When this occurs, the 
vendor has no option but to turn the virtual world off.  
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