

1

A Dependable Distributed Auction System: Architecture and an
Implementation Framework

Paul Ezhilchelvan and Graham Morgan

Department of Computing Science, University of Newcastle

Newcastle upon Tyne NE1 7RU, UK

Abstract
The work presented here develops a distributed systems architecture and propose an
implementation framework for conducting dependable Internet based on-line auctions, meeting
the requirements of scalability and service integrity. Current auction services essentially rely on a
central auction server. Given the increasing popularity and usage of electronic auctions, such a
centralised approach is fundamentally restrictive with respect to scalability. Further, different
national markets have different monetary regulations and may employ different procedures for
payment settlements. Catering for local market autonomy means that decentralisation is an
essential and practical requirement. With these design goals in mind, the paper develops an
approach that permits an auction service to be mapped on to globally distributed auction servers.
It then proposes a framework for a fault-tolerant implementation of the architecture. Fault-
tolerance is achieved through matured technologies: replication management and group
paradigm.

Keywords and Phrases: Auctions, distributed servers, multicast groups, passive and active
replication, reliable multicast, membership service, synchronous and asynchronous networks.

1. Introduction
The Internet and World Wide Web have emerged as a valuable networked information source
that is increasingly being used for commerce. We focus on a particular domain of electronic
commerce: the Internet based auctions, which are rapidly diversifying into various products.
Most notable auction companies are eBay [http://www.ebay.com] for a wide range of products,
CNET [auctions.cnet.com] for electronic goods, Priceline [www.priceline.com] for air-line
tickets, and E*Trade [www.etrade.com] for financial products; eBay has recently moved into real
estate markets. These auction services essentially rely on a central auction server. As the market
grows, such a centralised approach, we believe, will prove to be very restrictive as too many
users can overload the server, making the whole auction process less responsive than the sellers
and buyers would prefer. We require an auction service to be scaleable, i.e., capable of providing
its end users with satisfactory Quality of Service (QoS), regardless of the number of those users
and their geographical distance. Further, as the auction market becomes global, the centralised
approach cannot effectively cater for variations in national/regional market regulations and
procedures: different markets may employ their own rules, monetary regulations, payment
procedures, etc. These autonomy considerations make decentralisation in system design not just a
desirable option but also an absolute practical requirement.

We therefore investigate ways of enabling widely distributed, arbitrarily large number of auction
servers that cooperate in conducting an auction. Each auction server serves a local market and is
a part of the global system. Allowing a user to bid at any one of the servers is our principal way
of achieving scalability. We propose an architecture that hierarchically structures the auction

2

servers to minimise inter-server communication and also preserves fairness: every participant
bidder, no matter which server he/she places his/her bid to, should have an equally fair chance for
submitting a successful bid. For simplicity, we consider that there is one seller, one item to be
auctioned and many bidders, so fairness will be concerned only with the bidding process
(generalisation is clearly possible, but not considered here). Achieving fairness of auctions
conducted over the Internet using a single auction server is a challenging problem as it is [1,2],
since differing message transmission delays experienced by bidders can clearly compromise an
auction’s fairness. Achieving fairness of an auction conducted over a group of auction servers is
even harder, but must be done in order to obtain scalability.

Having presented the system architecture, we propose an implementation framework taking node
failures into account. We use replication management techniques to build a reliable server that
preserves the single-server abstraction to the users (traders). We then resort to group management
techniques to facilitate the (replicated) servers to exchange messages and cooperate with each
other. The proposed implementation assumes two basic services: reliable multicast and group
membership, which many of the existing group management middleware systems [3-9] can
readily provide. By exploiting the fact that a server is internally replicated (over a synchronous
network), we circumvent the unsolveable problem [10] of accurate failure detection in an
asynchronous network (e.g. the Internet) which the servers would use to communicate with each
other. The paper is organised as follows. Next section describes various types of auctions and the
design approaches taken by existing auction systems. Section 3 presents our system architecture,
section 4 the implementation framework where fault-tolerance issues are discussed. Section 5
concludes the paper.

2. Background and Related Work
2.1. Types of Auctions

One of the most commonly known auctions is an open-cry or English auction. In a traditional
(non-electronic) setting, the auctioneer initiates the auction by quoting an initial price which is
usually the minimum price acceptable to the seller and is also known as the seller’s ask. Bidders,
assembled in the same room as the auctioneer, are to signal to the auctioneer to express their
acceptance of the quoted price. As soon as the auctioneer sees a bidder signalling, he cries out the
quoted price pointing at that bidder; this is meant to announce that the bidder has placed his bid
for the quoted amount and his bid has been accepted; the quote now becomes the highest bid
accepted. The auctioneer then increases his quote by some α > 0. If the auctioneer sees another
bidder signalling, the latter is assumed to be placing a bid for the latest quote (= current highest
bid + α). He cries out the new highest bid accepted, pointing at the second bidder, and then
increases his quote by α again. This continues until bidders signal no more for the latest quote
from the auctioneer. At this point in time, the auctioneer may revise his latest quote by adding a
smaller α to the highest accepted bid. If a few revisions of the latest quote also do not attract any
bidder, the auctioneer conveys his intention to terminate the auction by repeating the highest
accepted bid three times. (Any signalling from a bidder during this repetition would mean that
the bidder is placing his bid for the latest quote, and the auction would continue.) If no signalling
is detected during these repeated cries, the hammer is banged on the table to signal the end of the
auction. The item is sold to the highest bidder who pays the highest bid amount. Note that if there
is no bid even for the ask (the initial quote), the auction is abandoned.

3

Dutch auctions are generally used for selling items that tend to perish rapidly (e.g., flowers,
fruits, etc.). Here the auctioneer starts with a quote which is usually more than the expected price
for the item. If there is no bid, the quote is decreased by a fixed amount at fixed interval, until a
bid is received or the quote falls below the seller-specified minimum amount. If there is a bid, the
bidder takes the item for the bid amount. In sealed-bid auctions, a bid placed is not made known
to other bidders. Once the deadline for accepting bids is gone past, the bids received are
inspected. In the sealed-bid first-price auction, the highest bidder takes the item for the amount
he specified; in the sealed-bid second-price auction, the highest bidder takes the item for the
amount specified by the second highest bidder. The former can be shown to be equivalent to
Dutch auctions, and the latter to English auctions [11].

In the auctions described so far, the seller remains passive (except in stating the minimum price).
This asymmetry is removed in double auctions which admit aspects of bargaining. The seminal,
k-double auction model of [12] involves a single buyer and a single seller who respectively
submit a bid b and an ask a; if b exceeds a, then a trade is consummated at the price kb + (1-
k)a, where 0 ≤ k ≤ 1. Details on double auctions can be seen in [13, 14]. In what follows, we will
focus on English auctions for selling a single item.

2.2. State of Art on Internet Auctions

Centralised Server Approach

A central server displays the item to be sold, announcing the deadline for placing bids. Bidders
can access the server for bid placements and it is their responsibility to ensure that their bids get
to the server before the deadline. Once the deadline is past, the item is sold to the highest bidder
(as in English auctions). Some well-known central server systems are eBay and AuctionBot [15],
the latter having been developed as a research system to explore auction mechanisms. The server
may be accessed by long- or short-distance bidders via Internet, or by mobile systems, or by
agents executing on the server itself (see figure 1(a)). The access is usually authorised through
brokers whose main role is to ensure that the server can trust the bidders. (For example,
zipRealty acts as the broker for eBay’s real-estate business[http://www.ziprealty.com/]) The
brokers typically verify the bidders’ ability to settle the account and distribute authentication
keys. The server itself executes tasks that provide various functionalities and can be configured
to implement various auction-related policies. The functionalities are mainly: (i) verifying the
authenticity and timeliness of incoming bids, (ii) displaying the information about the auction
details, such as the bidding deadline, the highest bid placed etc., and (iii) the core functionality of
processing the bids. We refer the reader to [15, 16] for details on these server tasks and the
functionalities they are designed to provide.

With the increasing popularity and usage of Internet auctions, the centralised approach cannot
clearly scale. Further, as [16] observes, it cannot effectively deal with the autonomy of local
markets: different national markets may employ their own rules, monetary regulations, payment
procedures, etc. Given that the auction system would be used by bidders from different parts of
the world with diverse market procedures and customs, it must be designed to cater for variations
in market mechanisms. These autonomy considerations make decentralisation in system design
not just a desirable option but an absolute practical requirement. Enchere [17], an early auction
system built with emphasis on data integrity, supports a serverless model whereby bidders and
traders interact directly and decide the auction outcome. (Alternatively, it can be viewed as a

4

centralised system where the central server is the stateless communication subsystem.) We
believe such an approach is suited only to small scale auctions confined to a single market.

(Auction)
Server S

Internet/Private
Network

S4

S1 S2

S3

local market

Bidder
local market

wired communication wireless communication

Bidder
Bidder

(a) (b)

Bidder
Agent

Figure 1. (a) Central Server S. (b) Interconnected Local Market Servers

Interconnected Servers

In this approach taken by [16], there is a server for a given local market, which exercises policies
best suited to local conditions and market mechanisms, e.g. setting bidding deadlines by taking
into account of the reliability and the available bandwidth of the local portion of the Internet,
formulating payment rules that are feasible and/or popular with the local traders, etc. Local
market servers are connected to each other by the Internet or by a high-bandwidth private
network (see figure 1(b)), with a communication infrastructure that enables them to conduct B2B
(business-to-business) transactions. Thus, a collection of interconnected local markets constitutes
the global market.

The following auction process model is pursued: consider a seller contacting his local market,
say S1, for an item to be auctioned. S1 initiates an auction (of the specified type) within its local
market. If S1 receives no bid more than the ask, it contacts a subset of other local markets, say S2
and S3, regarding X. (S1 would have policy defined for choosing remote markets.) Thus, S1,
when necessary, acts as a broker in the global market (on behalf of its local trader). S2 and S3

5

interact with their respective local markets over S1’s request. It is possible that both S2 and S3
come up with a bidder for X. To ensure that X is sold (as a single item as advertised) either to S2
or to S3, S1 follows a technique that is similar to resolving lock conflicts distributed databases.
By thus letting a local server go global only on a need-to-go basis, scalability and autonomy
concerns are addressed. In another model, known as the explicit multicast model (also supported
in [16]), the seller of X simultaneously and explicitly requests, right at the start, not just the local
server S1 but also a subset of remote markets of his choice, to conduct auctions on X in their
respective local markets, with S1 playing an active role in ensuring that X is sold in at most one
market. We compare this approach with ours in the next section where we describe our system.

3. Distributed Auction System
3.1. Overview

For ease of exposition, we shall assume in the rest of the paper that a bid received by a server is
valid, timely, and authentic, and hence is accepted. This enables us to concentrate on a server’s
core task of processing the bids and selecting one (the highest) bidder for the (single) item to be
auctioned in a global market. We would also assume that a bid accepted by a server cannot be
withdrawn. Further, we admit no server or communication failures which are discussed in section
4. We regard the distributed auction system to be made up of many bid servers connected to each
other via the Internet or a privately-owned, high-bandwidth network. Each server serves a local
market as in figure 1(b). A seller will request the local bid server for auctioning an item. Once
the request is accepted, the local server informs all other servers (by default) in the system to
initiate an auction on the item. Every server in the system then displays the details of the item to
be sold, announces the start of a new auction to its respective local market, and accepts bids.
Periodically, it multicasts the bids it has received so far to every other server in the system. These
multicast messages are called the episode messages, as their contents are to be aggregated by
each server to form the history of bids accepted (so far) in the global system. The episode
messages generated by a given server obey the following rule: every local bid accepted is referred
to in one of the episode messages, and no two episode messages refer to the same bid. This is
necessary to ensure that the global history constructed by each server represents any given bid
exactly once. To seek a better offer for the seller, out-bidding is encouraged: each server displays
the global bid history it computes, to the local bidders - thus making them aware of the global
bidding trend. Further, if a remote bid is known to be the same as or higher than the highest local
bid, the server extends the deadline for accepting new bids from the local market. When no new
higher bid is placed in any of the servers until the expiry of the locally-set deadlines, the auction
terminates.

Note that, in our approach, the default market is the global one involving all servers; whereas, in
the interconnected severs approach, the market starts with the local one, and expands to other
local markets when there is no demand in the local market. However, implementing a distributed
global auction system is a challenging task, and requires, from systems and networks point of
view, the following problems to be solved.

Message Exchange: Imagine the system being comprised of tens of distributed bid servers.
Requiring each server to multicast its episode messages periodically to the rest of the system, is
not a scaleable way to build the system, even if one takes into account of the advances in IP-
multicast technology that uses programmable (multicast-aware) routers. So, a sensible structuring
of the system is needed. For reasons of scalability, such a structuring should not particularly
require a server to know, or multicast messages to, all other servers in the system.

6

Termination detection: Knowing that the global auction has/has not terminated is equivalent to
solving termination detection problem in a distributed setting – which is not a trivial task though
algorithms do exist [18, 19] but are typically message expensive. Hence, the system structuring
we decide on, must assist solving this problem in economical ways.

Market Shrinkage: Imagine that, in a particular local market, there is no bidding at all right from
the start of the auction, or bidding ceases early during the auction process; it is better for that
server to reduce its processing load by leaving the global system regarding that auction process,
so that only the interested market servers continue to communicate among themselves. So, any
technology we use to implement the system must be capable of supporting dynamically changing
market groups.

Addressing the third issue, completes the differences between our approach and the
interconnected severs approach: the same objective is realised starting from diametrically
opposite points. We start off with a default global market, provide support for shrinking market
base if there is no demand. In the other approach, auction starts off with the local market and
support is provided for market base to expand when necessary.

3.2. System Structure

We structure the system of servers into a tree, rooted on a single server. Fig. 2(a) shows eleven
servers arranged in a tree, with the root being server S11 with which the seller is assumed to be
registered. Recall that servers can directly communicate with each other as shown in fig. 2(b) and
this tree structure is a logical one imposed in an attempt to make the inter-server communication
scaleable and the termination detection efficient; also, that each server caters for a local market
and has its own (local) bidders registered directly with it.

Adhering to the conventional terminology, the root server is regarded to be at the top-most level
of the tree. A server is termed the parent of all those servers that are directly connected to it and
are one level below; the lower level servers are termed the child servers of the parent. (In the tree
of figure 2(a), S9 is a parent for S7 and S3, and is a child of S11.) A server (such as S1) that has no
child is called a leaf server. We do not require the tree to be a balanced one (though such a tree
would improve the communication efficiency) nor a binary one as shown in the figure. What we
do require is that the root server be connected to every other server either directly or via a
sequence parent of servers, and that every non-root server have only one parent.

Based on the tree structure, servers are partitioned (not disjointly) into multicast groups: a group
consists of one parent and all its children. Within a multicast group, servers know each other’s
identifier and periodically multicast the episode messages. Referring to the tree in figure 2, the
eleven servers will be divided into five multicast groups: {S11, S9, S10}, {S9, S7, S3}, {S7, S1, S2},
{S10, S8, S6}, and {S8, S4, S5}. Every server is in at least one group and a parent server, except
the root, is present in two groups. For a parent server (such as S7), the group that contains its
children is called its down-tree group and denoted as Gd; e.g., Gd of S7 is {S7, S1, S2}. For a non-
root server, the group that contains its parent is called its up-tree group and is denoted as Gu; e.g.,
Gu of S1 is {S7, S1, S2}.

7

seller

S11

S10 S9

S7 S3 S8

S1 S4 S5

Internet/Private
Network

S11 S10

S9

S8

S1

S7

S5 S4 S6 S3

S2

seller

S6

S2

Figure 2. (a) Logical Tree of Servers. (b) Distributed System of Servers.

Partitioning the servers into multicast groups based on a tree structure, facilitates dissemination
of episode messages in the following recursive manner. A non-root parent server periodically
aggregates its own episode message with messages received from its children during the past
period, and multicasts the aggregated episode message in its Gu. Thus, in its up-tree group, it
represents the bids received by every server of the sub-tree rooted on itself. The downward
propagation of episode messages also work in the same way but in the downward direction: a
non-root parent server periodically aggregates its own episode message with the messages
received from other members of its Gu during the past period, and multicasts the aggregated
episode message in its Gd. The root server periodically multicasts only its own episode message
in its Gd; similarly, a leaf server periodically multicasts only its own episode message in its Gu.
The next subsection describes how episode messages are aggregated, particularly ensuring that
any given bid (placed anywhere in the global system) is represented exactly once in the global
history computed by every server.

Seeking tree-based structuring for reasons of scalability is frequently done in the literature. For
example, the concept of IP-multicasting for a large number of receivers, first presented in [20],
assumes that the IP-enabled routers are arranged in a tree (with the router attached to the message
sender forming the root). Well-known scaleable transport protocols [21,22,23] use this tree
structure to guarantee end-to-end reliability requirements. The analysis of [24] also favours that
servers in a large scale setting be arranged in a tree for message efficiency. Assuming a tree
structure, however, requires addressing the task of the tree-formation.

We assume that the server that a seller contacts will act as the root server (as indicated in fig 2).
Given that the root is fixed, any of the appropriate tree forming algorithms readily found in IP-
multicast literature can be used to construct a tree, if one is not already formed. We briefly focus
on the policy issues that define the scope of the ‘global’ market. Though we assume that the

8

seller’s local server includes all other servers into the system before forming the tree, in practice
the server would exercise judgement in the selection of other local markets. This would depend
on the expected demand in the remote markets for the item to be auctioned. For example, if the
item is a second-hand bicycle and the local market is London, no remote market may be
included; however, if that bicycle is the one which (late) Princess Diana used, then its market
potential becomes truly global and at least all Western and Pacific markets certainly need to be
included. The commission the seller is willing to pay will also influence the scope of the global
market initially defined. Further, if a tree already exists for the type of item to be auctioned, then
the local market may pass on the seller’s request to the root of the tree to include the item in the
next auction. We here note that selecting a set of markets for defining the auction market is
similar to the explicit multicast model supported in [16]; also that we permit the number of
selected markets to be unrestricted. In what follows, we assume that the tree has been set-up,
containing many local markets.

3.3. System Architecture

Information Board for Bidders

A server displays the following to the bidders of its local market: global bid history (GH), the ask
price (ask) which is the minimum price the seller is willing to accept, the increment (I) which
indicates the minimum amount by which a new bid should exceed the current highest bid, and
the local time Tclo when the accepting of new bids will close. GH indicates the server’s (current)
knowledge of the number of bids placed in the global system for different bid amounts. It may
appear in the format shown in fig 3(a) which indicates that, for example, bid amounts of $100
and $150 are currently known to have been placed by 2 and 6 bidders, respectively. GH does not
reveal the identity of bidders, only their cardinality for a given amount. The bidders counted in
GH may have placed their bids at any one of the servers in the system. The number shown against
a given amount may change with time as the server learns more on the global state. Since we
assume a bid accepted cannot be withdrawn, it will never decrease.

Ask = $100. I = $10; Tclo = 1615 hours.

GH:

$100 $110 $135 $150

2 3 1 6

Figure 3. A server’s Display.

When the server starts the auction, it sets Tclo to be the current (local) time + ∆, where ∆ is
decided by the server depending on the worst case communication delays with the local bidders
and the (local) time of the day (taking into account of the normal working hours, public holidays
etc.). Whenever it accepts a new bid, it stores the bid details (the bid amount, the bidder id,
bidder’s address etc.) in a local database, updates GH to reflect the new local bid, and extends
Tclo by an appropriate ∆. Note that if the previous highest bidder reads the display before the
closing time that was displayed when s/he placed the then highest bid, s/he would realise that
new higher bid has been placed; extending Tclo

 by appropriate ∆ allows the previous highest
bidder to place a new bid higher than the current highest. Whenever the server receives an

9

episode message, it updates GH. If it observes that the received episode message indicates a bid
that is the same as or higher than the highest local bid it has accepted, then it extends Tclo by ∆
(even if Tclo has gone past), and informs the local highest bidders of the change in the GH
displayed and the new value for Tclo. Though extending deadlines and informing active bidders,
result in a better price for the seller, they place a burden on the current highest bidder who
intends to increase his bid in case a higher bid is placed locally or elsewhere. Such a bidder needs
to be in a semi-active state, waiting to hear from the server. In practice, this burden can be
alleviated by the server instructing the bidder to inspect its display at specified intervals, and
computing ∆ based on this interval. I is decided locally by the server which can change it (based
on global bidding trend) when Tclo gets extended.

Episode Messages

We next describe how episode messages are constructed and aggregated. We will first consider a
leaf server which need not aggregate episode messages but simply has to disseminate its own.
When it accepts a new bid, it updates an episode frequency table (EFT) which has the same
structure as GH: maintaining the bid frequency only for local bids that are accepted but not yet
made known to the rest of the system. Before sending an episode message, it abstracts the
contents of EFT into variable E which has three components: E.base, E.bidders, and
E.offset; the last two components of E are integer and amount lists respectively, both indexed
by k, k ≥ 0. E.bidders[k] indicates the number of bids placed (according to EFT) for
amount = E.base + E.offset[k]. After the computation of E, EFT is set to an empty
table. Figure 4 gives an example EFT and the corresponding E.

EFT:

$110 $135 $150

2 1 3

E.base = $110;

E.bidders = [2, 1, 3]

E.offset = [0, 25, 40]

Figure 4. Episode Frequency Table (EFT) and the corresponding E..

If the EFT is empty, the E computed is denoted as ⊥. We will model the process of computing E
from EFT as an execution of function Φ: E = Φ(EFT). We define the operator + between
variables of E: (E1+E2).bidders and (E1+E2).offset would represent all the bid
frequencies represented by both E1 and E2, with (E1

+E
2
).base = minimum{E1

.base,
E2.base}. Periodically, the leaf server computes E and, if E ≠⊥ it multicasts to every other
server in its Gu the message Episode(own-id, seq-no, E) which has three parts: its own
(unique) identifier own-id, the message sequence number seq-no, and the computed E. We
assume that multicasts are delivered in the source-fifo (first-in-first-out) order at the destinations;
so, the episode messages from a given server are delivered in the increasing order of their
sequence numbers.

A non-leaf server (except the root) is in two groups, so it maintains two EFTs: EFTu and EFTd
which maintain the bid frequency for accepted local bids which are not yet made known in Gu
and Gd, respectively. (When a local bid is accepted, it is represented in both EFTs.) The server
also has to aggregate the contents of the episode messages it receives. To ensure that no episode

10

message is aggregated more than once, it maintains two private variables lri
 (last_received)

and ldi (last_disseminated) for every other server Si in Gu and Gd: ∀Si ∈ Gu ∪ Gd –
{own-id}. lri indicates the sequence number of the latest episode message received from
Si; ldi the sequence number of Si’s latest episode message that the local server has
aggregated and disseminated. Note that ldi ≤ lri for any Si. Finally, we use Ei

j to denote
the E component of an episode message received from server Si with seq-no= j.

When a non-root server wishes to multicast an episode message in Gu, it first computes Eu
 =

Φ(EFTu; then, for every Si ∈ Gd – {own-id}, it computes Eu = Eu + Ei
ldi +1+ Ei

ldi +2 ... +
Ei

lri if ldi < lri, and sets ldi = lri. Similarly, a non-leaf server computes:

E
d
 = Φ(EFTd

) + (∀Si ∈ Gu
 – {own-id}: E

i

ldi +1+ E
i

ldi +2... + E
i

lri). The
pseudo code for multicasting in Gu and Gd are given below.

periodically do
 compute Ed;
 if Ed

 ≠ ⊥ then multicast Episode(own-id, seq-no, Ed
)

 in (Gd - own-id);
 compute Eu;
 if Eu ≠ ⊥ then multicast Episode(own-id, seq-no, Eu)
 in (Gu - own-id);
 // for termination detection
 if (Eu = ⊥ and TC1 and TC2) then
 unicast to parent(G

u
)

 Terminated(highest_bid, highest_bidders);
od
TC1: current_time ≥ Tclo;
TC2: ∀Si ∈ Gd–{own-id}: received_message(Terminated(highest_bid,
highest_bidders));

The above algorithm becomes generic for every server, if we let multicasting in an empty group
be a no-operation. Provided that every leaf-server has only one Gu and the root has only one Gd,
and that every non-root parent server S has Gu ∩ Gd = {S}, we have the following: every parent
server disseminates at most once (i) all bids accepted in the sub-tree rooted on itself, in its Gu;
and, (ii) all bids accepted in the rest of the tree and by itself, in its Gd. A proof of this can be seen
in [25]. Now, what needs to be shown is that the auction process does not terminate
(prematurely) when a server has a non-empty EFT or its Episode message is in transit.
Showing this will transform the above guarantee from at-most-once into exactly-once.

Auction Termination

When a leaf server finds Eu = ⊥, it checks whether the current time is less than Tclo. If not, the
terminating condition TC1 becomes true and the leaf server concludes that its GH has been
displayed long enough and has attracted no further bid from the local market. (TC2 is trivially
true for a leaf server as its Gd is a single-ton set containing itself.) So, it sends to the parent
server of its Gu the Terminated message containing highest_bid and
highest_bidders which respectively indicate the highest bid and the number of bidders who
had placed that bid as per the displayed GH. (They are respectively the top and bottom entries of

11

the rightmost column of GH in figure 3.) A non-leaf server additionally has to verify TC2:
whether it had received a Terminated message from all its children for the pair
{highest_bid, highest_bidders} which are the highest bid and the number of bidders
who had placed that bid as per its GH. When the root server has both TC1 and TC2 to be true, it
decides that bidding has ceased globally and the auction process has terminated.

Observe that the Terminated message is similar to the marker message used in [26] for
determining a consistent global state of a distributed computation; also that a non-root server
may send more than one Terminated message; if so, only the last one will have
{highest_bid, highest_bidders} ≡ {$Bmax, N}, where $Bmax is the highest bid amount
placed by N bidders when bid placement ceases globally. To see how termination detection
works ([25] has rigorous proofs), suppose that the root server decides on termination, with its
pair {highest_bid, highest_bidders} being {$300, 5}. This means that none of its
local bidders is willing to put a new bid of $300 or more within the deadline it had set (TC1);
further, every one of its children (subtrees represented by its children aggregate to the entire tree
minus itself) has also reported the same (TC2). So, by induction, every server had autonomously
concluded and reported that it has no new local bidder who is willing to put a bid of $300 or
more within the deadline it set.

Referring to 2(a), we describe how the root (S11) decides the final winner, given that it had
detected termination for {$300, 5}. Suppose that one of the six highest bidders is a local one and
three are reported by S9 and two by S10. It conducts a weighted draw between itself (weight 1),
S9 (weight 3), and S10 (weight 2). (It typically chooses a random number in the range 1 .. 6, and
decides the winner to be its local bidder, S9, or S10, if the random number is 1, in the range 2 .. 4,
or in the range 5 .. 6, respectively.) It then announces the winner and the losers. If S9 is the
winner, it conducts a weighted draw, and this process of selection continues down the tree
recursively. Full details can be seen in [25].

4. Reliability Issues
4.1. Network Fault Model

The distributed auction system described above has two subsystems: servers and the
communication network that interconnects them. A server can fail, usually in various ways, and
must be built reliable using internal redundancy so that the auction service remains available.
Using well-known redundancy management techniques, reliable servers can be built. When the
network is not owned or maintained by the e-Auction service provider, this “must-be(-built)-
reliable” approach does not work for the network, especially in the case of the Internet. So we
first establish the weakest failure model the network must satisfy. The Internet generally provides
a reliable communication (in the sense that what is sent is received, perhaps after a few retries)
provided networks do not partition. So, the network assumption needs to be:

NA1: provided that servers Si and Sj are correct, a message sent by one to the other is eventually
delivered (asynchronous network).

Meeting this assumption requires that communication path between any two servers, if broken,
be eventually restored. NA1 enables the server communication be reliable but not synchronous: a
bound on how long messages can take to reach the destination cannot be known with certainty. It
should be noted that an eventual restoration of inter-server communication is essential for
ensuring both liveness and fairness of the auction process. Consider, for example, a bidder B1

registered with server S1 that is permanently disconnected from the rest of the system. Other

12

servers cannot terminate the auction without getting the Terminated message from S1;
otherwise, it is possible that the item is unfairly sold to another bidder who had placed a smaller
bid than what B1 placed (with S1).

4.2. Handling Processor Faults

A processor can fail in many ways, and there are two extreme fault models.

Byzantine Model: A faulty processor can fail in arbitrary ways.

Crash Model: A faulty processor fails only by stopping to function (crashing).

In what follows, we would assume the latter fault type, since the abstraction of crash failures can
be implemented on top of a system of processor replicas subject to Byzantine faults, by running
appropriate software protocols [27]. The following assumptions are usually made in
implementing such an abstraction.

NA2: The network (typically a LAN) that interconnects processor replicas ensures that, provided
that two replicas are correct, a message sent by one to the other is delivered within some known
bound (synchronous network).

A1: when two correct process replicas perform a given task with the same initial state, the final
states they reach and any outputs they produce are identical.

A1 is essential for process replication and holds true in the context of bid processing; NA2
permits less than one half of the replicas to be faulty. (Without it, only less than a third can be
faulty [28]).

4.3. An Implementation Framework

We would adopt passive replication strategy to build reliable servers as it would enable a
replicated server Si to provide fast responses in the absence of faults. Figure 5 shows the internal
structure of Si. ISi is the interface processor (front end) between n, n > 1, processor replicas and
the traders of Si’s local market, and it is assumed reliable for the time-being. Further, NA2 is
assumed to hold between ISi and the processor replicas.

S i
1 S i

2 S i
n

IS i

...

To/From bidders
and sellers

To/from other servers From other servers

Figure 5. Internal Structure of Server Si.

13

In passive replication, only the highest ranked replica, called the primary (Si
1 in figure 5),

processes, and responds to the requests; for every received request, it multicasts to other replicas
the state changes effected and any response produced due to processing of the request. If ever the
primary crashes, the highest ranked among the non-crashed replicas becomes the new primary
and continues with the processing of incoming requests. The sever can provide services despite at
most (n-1) replica crashes.

An implementation of passive replication is done using the following services within Si. A
reliable fifo multicast service (RMi) which ensures that if the primary crashes during a multicast,
either all functioning replicas or none of them receives that multicast, and a group membership
service (GMi) which promptly informs the functioning replicas of replica crashes and the order in
which these crashes must be viewed with respect to message delivery order. (This property of
synchronising crash notifications with message delivery order is known as view or virtual
synchrony [3].) These services facilitate prompt selection of new primary after the existing one
crashed, and guarantee that the survivors are in agreement on the last multicast the old primary
made before it crashed so that the transfer of the processing role from the old to the new primary
remains correct. The specification and protocols for RMi can be found in [29], and for GMi the
specification in [3-9] and protocols (that use NA2) in [30-32].

Note that with passive replication, while every replica may receive the inputs, only the primary
sends the server output to ISi and to other servers. Next, we describe how the (passively
replicated) servers exchange episode messages. For simplicity we will consider a single multicast
group G = {S7, S1, S2}(see figure 2), and assume that each server Si, i = 1, 2, or 7, is internally
duplicated (n = 2) and Si

1 is the primary of Si. (With n =2, at most one replica can crash within
each Si.) G can be configured to be G = {S7

1, S1
1, S2

1}, containing only the server primaries. Note
that the members of G communicate with each other using an asynchronous network where only
NA1 (not NA2) holds. Suppose that S7

1 crashes and an autonomous handling of this crash
involves S7

2 detecting the crash of S7
1 (through GM7 operating within S7) and joining G. S1

1 and
S2

1 (the surviving members of G) should not be entrusted with failure detection, as accurate
failure detection is impossible over an aynchronous network [10]. Join operations are usually
costly and time-consuming; so, we construct G containing not just the primaries but also the
secondaries.

The composition of G is shown in figure 6. We assume a reliable fifo multicast service (RMG)
and a group membership service (GMG) within G. Using RMG, (only) primaries would multicast
episode messages which are received by every member of G. Note that RMG and GMG must be
implemented with NA1 alone. Many groupware systems e.g. [3-9], can provide these services
just with NA1. However, they use failure suspectors to handle crashes which must be switched
off and membership changes be effected by failure notification multicast (in G) by a Si

2 when
primary crash is detected through GMi. Observe that Si

2 can reliably detect the crash of Si
1 using

the (local) GMi that is built with assumption NA2. Further, (the view synchrony property of)
GMG will ensure that Si

2 is in agreement with other members of G over the last episode message
that Si

1 had multicast in G before it crashed. Therefore, no episode message of Si will be left
unsent in G when Si

2 promotes itself to the primary of Si.

14

Internet/Private
Network

S 7
1

S 1
1

S 7
2

S 1
2

S 2
1 S 2

2

S 7

S1

S 2

Figure 6. Replicated Processors S1, S2, and S7 forming a Group

Market Shrinkage

Suppose that S1 wishes to leave G due to lack of interest in its local market. This leave request
can be easily handled by GMG by treating it as ‘announced crashes’ of both S1

1 and S1
2. Suppose

that S7 also wants to leave G sometime after S1 had left. It cannot leave G until S2 joins its Gu =
{S7, S3 S9} (see figure 2(a)); otherwise S2 will be left with no parent. As all the cited groupware
systems support joining of new members in such a way that the existing members view the
joining identically with respect to the messages they delivered in the old and new configurations;
hence, S2 joining {S7, S3 S9} can be achieved in a manner consistent with the on-going multicasts
within {S7, S3 S9}.

Reliable Web Interface for Servers

Figure 7 depicts the approach we have taken to incorporate a web interface for a server (whose
internal replication is not shown). The auction service supported by Si can be implemented as a
collection of CORBA services; traders (bidders, brokers, and sellers) would access these services
(subject to well-defined access control policies) via serverlets running in association with a web
server. This approach allows auction services to be implemented on a (market) server different to
that of the web server. Access to auction services is via forms on web pages. As all popular web
browsers may accommodate the use of forms, there is no need to enhance the trader side with
additional functionality to enable the use of auction services. We ensure that the web server is a
stateless machine and all state information is held within S. However, the failure of ISi can make
the auction services unavailable. So, we replicate the web server as shown in figure 8.

15

Interface ISi

Web server
Auction service

Serverlets

Seller/buyer req/ack
(via HTTP)

Seller/buyer req/ack
(via IIOP - CORBA)

Server Si

Figure 7. Web server as a server interface

There are two sets of web server/serverlets running on distinct machines ISi
1 and ISi

2, and at most
one of them can crash. The router is assumed reliable (single point of failure) and uses a
mechanism (such as round robin DNS) to determine which (functioning) web server to direct an
incoming trader message to. The serverlets of each ISi

j then reliably multicast the message to
both server replicas.

Router

Web
server IS1

Web
server IS2

Bidding
service

Bidding
service

Rel. Mcast service

Trader
message S1

S2

Figure 8. Increasing the Reliability of a Server Interface

5. Concluding Remarks
In this paper we have developed a hierarchic auction architecture to enable an auction to be
conducted over a set of arbitrarily distributed auction servers, in the presence of processor
failures. Allowing a user to bid at any one of the servers is our principal way of achieving
scalability, as the total load is shared amongst many servers. In this respect the architecture
presented here is very attractive for conducting auctions on a global scale, as it enables a
federation of auction houses to cooperate. In the physical, non-electronic auctions, it is the
auction house to which buyers and sellers must go in order to conduct an auction. The auction
house is responsible for setting up and guaranteeing various contracts that are used to create and
manage the auction. For example, certifying that the seller is authorised (and has) to sell the item,

16

ensuring that bidders have sufficient credit limits (and have not been previously barred from
bidding), and guaranteeing specific quality of service contracts. The auction house paradigm
transfers relatively easily from the physical to the electronic world, with the local auction server
representing an auction house, and the entire tree (fig. 2(b)) representing a federated auction
house.

The implementation framework addresses two important issues: (i) building a reliable/available
server through process replication, and (ii) enabling a group of such servers to communicate in a
flexible manner that allows a server to leave the system if it receives no active bidding in its local
market. The latter is achieved through the use of group management techniques which are well
established both in theory and practice. By exploiting the fact that a server is internally replicated
over a synchronous network, we circumvent the unsolveable problem [10] of accurate failure
detection in an asynchronous network (e.g. the Internet) which the servers use to communicate
with each other. Currently, we are implementing our architecture, for a system of 3 long-distance
servers to start with. (They are situated in Pisa, Newcastle, and London.) Our NewTop group
management system [6] (built in Java) provides the basic services which the framework proposed
here assumes. We also intend to enhance the system design for multiple sellers, and other types
of auctions including double auctions.

References
[1] M.P. Wellman and P.R. Wurman, “Real time issues for Internet auctions”, IEEE Workshop on dependable and

real time e-commerce systems (DARE-98), Denver, June 1998.

[2] C.S. Peng et al, “The design of an Internet based real time auction system”, IEEE Workshop on dependable and
real time e-commerce systems (DARE-98), Denver, June 1998.

[3] K. Birman , “The process group approach to reliable computing”, CACM , 36, 12, pp. 37-53, December 1993.

[4] Amir, Y., et al, “Transis: A Communication Sub-system for High Availability”, Digest of Papers, FTCS-22,
Boston, July 1992, pp. 76-84.

[5] D. Dolev and D. Malki, “The Transis approach to high availability cluster communication”, CACM, 39 (4),
April 1996, pp. 64-70.

[6] P D Ezhilchelvan, R Macedo and S K Shrivastava, “NewTop: a fault-tolerant group communication protocol”,
15th IEEE Intl. Conf. on Distributed Computing Systems, Vancouver, May 1995, pp. 296-306.

[7] L.E. Moser, P.M. Melliar-Smith et al, “Totem: a Fault-tolerant multicast group communication system”, CACM,
39 (4), April 1996, pp. 54-63.

[8] P. Felber, R. Guerraoui and A. Schiper, “The implementation of a CORBA object group service”, Theory and
Practice of Object Systems, 4(2), 1998, pp. 93-105.

[9] M. Hayden, “The Ensemble system”, PhD thesis, Dept. of Computer Science, Cornell University, 1998.

[10] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of Distributed Consensus with one faulty Process,"
Journal of the ACM, Vol. 32, No. 2, pp. 374-382, April 1985.

[11] P. Klemperer, “Auction theory: a guide to the literature”, Journal of Economic Surveys, 13(3), July 1999, pp.
227-286.

 [12] K. Chatterjee and W Samuelson, ‘Bargaining under Incomplete Information’, Operations Research, Vol 31,
1983, pp. 835-51.

[13] P.R. Wurman, W.P. Walsh and M.P. Wellman, “Flexible double auctions for electronic commerce: theory and
implementation”, Decision Support Systems, 24, 1998, pp. 17-27.

[14] D. Friedman and J Rust, “The Double Auction Market: Institutions, Theories and Evidence”, Addison-Wesley,
1993. [5].

17

[15] P. Wurman, M. Wellman and W Walsh, “The Michigan Internet AuctionBot: a configurable Server for
Human and Software Agents”, In Second ACM International Conference on Autonomous Agents, pp. 301-308.

[16] B Rachlevsky-Reich, I Ben-Shaul, N T Chan, A Lo, and T Poggio, "GEM: A Global Electronic Market System"
Information Systems Vol. 24, No. 6, pp. 495-518, 1999.

[17] J-P Banatre, M Banatre, G Lapalme, F Ployette, “The Design and Building of Enchere, A Distributed Electronic
Marketing System”, CACM Vol. 29(1), 1986, pp. 19-29.

[18] J Brzezinsky, J-M Helary, and M Raynal, “Termination Detection in a very General Distributed Computing
Model” Proc. 13th IEEE International Conf. on Distributed Computing Systems, Pittsburgh, USA, May 1993.

[19] F Mattern, “Algorithms for Distributed Termination Detection”, Distributed Computing, Vol 2 (3), 1987, pp.
161-175.

[20] S Deering, “Multicast Routing in a Datagram Internetwork”, Ph D Thesis, Stanford University, 1991.

[21] R. Yavatkar, J Griffoen, and M Sudan, ‘A Reliable Dissemination for Interactive Collaborative Applications’,
ACM Multimedia, 1995.

[22] S Paul, K Sabnami, J Lin, and S Bhattacharya, ‘Reliable Multicast Transport Protocol (RMTP)’, IEEE Journal
on Selected Areas in Communications, 15 (3), April 1997, pp. 407-21

[23] A M P Barcellos and P D Ezhilchelvan, “An End-to-End Reliable Multicast Protocol using Polling for
Scaleability”, IEEE INFOCOM’98, San Francisco, April 98, pp. 1180-87.

[24] Andersson, A; Ygge, F. "Managing large scale computational markets" 31st Hawaiian International Conf on
System Sciences, Vol VII, Software Technology Track, pp 4-13, IEEE Computer Society, 1998.

[25] P D Ezhilchelvan, S K Shrivastava, and M C Little, “A Model and Architecture for Conducting Hierarchically
Structured Auctions”, May 2000.
 Available at: www.cs.ncl.ac.uk/people/paul.ezhilchelvan/home.formal/unpublished/hierarchicFP.ps

[26] K M Chandy and L Lamport, “Distributed snapshots: Determining Global States of Distributed Systems”, ACM
Transactions on Computing Systems, Vol . 3(1), 63-75, 1985.

[27] S. K. Shrivastava, P. D. Ezhilchelvan, N. A. Speirs, S. Tao, and A. Tully, “Principle Features of the Voltan
Family of Reliable System Architectures for Distributed Systems,” IEEE Transactions on Computers, Vol.
41(5), pp. 542-549, May 1992.

[28] M Castro and B Liskov, “Practical Byzantine Fault Tolerance”, Third ACM Symposium on Operating Systems
DEsign and Implementation (OSDI) Feb 99, pp. 173-186.

[29] V Hadzilacos and S Toueg, "Fault-Tolerant Broadcasts and Related Problems", in Distributed Systems, (Ed.) S
Mullender, Addison-Wesley, 1993.

[30] H Kopetz, G Grunsteidl, and J Reisinger, “Fault Tolerant Membership aervice in a Distributed Real-Time
System”, International Conference on Dependable Computing for Critical Applications (DCCA89), Santa
Barbara, Aug 1989, pp. 167-174.

[31] P.D. Ezhilchelvan, and R. de Lemos, "A Robust Group Membership Algorithm for Distributed Real-time
systems", Proceedings of the 11th Real-Time Systems Symposium, Florida, December 1990, PP. 173-179.

[32] F. Cristian, "Reaching Agreement on Processor Group Membership in Synchronous Distributed systems",
Distributed Computing, 4(5), pp. 175-187, April 1991.

