
Efficient Resource Management for Game Server Hosting 
 

 

Dan Martin 

Alpha Networks LLP 

Northway, Tewkesbury, GL20 8RT, UK 

dan@alpha-networks.co.uk 

 

Graham Morgan 

School of Computing Science  

University of Newcastle, NE2 4NY, UK 

Graham.morgan@ncl.ac.uk

 

Abstract 
 

This paper describes work to ease the resource 

allocation problem in the domain of game server 

hosting. A solution was sought that required no 

alteration to game server code and would not inhibit a 

player’s gaming experience. Although an academic 

work, the problem is tackled in a commercial setting.  

 

1. Introduction 
 

The standard approach to server side scalability for 

Internet applications is to utilise a collection of 

geographically co-located nodes organised into a 

cluster that cumulatively support online services (e.g., 

search engines, e-commerce, and enterprise 

information portals). Such nodes are standard 

computers in their own right, and may operate as 

service providers independently of each other. Such 

computers are general purpose and not necessarily 

tailored for high performance multi-processor 

solutions, making them a cost effective approach to 

server side scalability.  

A common problem encountered in clustered server 

solutions is over provisioning. Over provisioning 

occurs when the amount of unused (or idle) processing 

resources resident in a server cluster reaches such a 

limit as to be considered wasteful. Each node in a 

cluster comes at a financial cost (e.g., maintenance, 

replacement) and to have more than is necessary is an 

overhead that should be minimised. Therefore, load 

balancing coupled with run-time modification of 

processing resources is common practice when 

attempting to ensure client requests are satisfied while 

minimising over provisioning in a cluster. 

In this paper we consider a real world commercial 

scenario where the problem of over provisioning of 

servers is acute. The real world scenario is that of 

Alpha-Networks LLP, which maintains a cluster of 

over 100 nodes for the purposes of game server 

hosting. We describe this scenario and identify a 

solution that eases the problem of over provisioning 

without inhibiting the performance as experienced by 

game players. Our solution requires no modification to 

the existing server implementation or the application 

logic, and can be applied transparently. We 

demonstrate our approach with performance figures. 
 

2. Background 
 

2.1. Game Servers 
 

In the popular First Person Shooter (FPS) genre of 

gaming there are companies that specialise in the 

provision of shared gaming scenarios for players 

(hosting companies). A game server is hosted within a 

hosting company’s premises, with players accessing a 

game server via the Internet. Such companies are not 

the creators of such games or the associated servers, 

but are simply application hosting companies 

specialising in game server provision. Customers who 

regularly play together, and may even form a team to 

play others, are commonly termed clans.  

Clans pay subscription rates based on the Quality of 

Service (QoS) delivered. Such QoS is defined in a 

Service Level Agreement (SLA) and may stipulate the 

available bandwidth, performance expectations, and 

availability of the game itself. Game servers are built 

for single node deployment only, giving the hosting 

company little choice but to dedicate a single node to 

each clan’s game or installing multiple game servers on 

a single node (SLAs permitting). To ensure a 

reasonable revenue stream, in excess of one hundred 

nodes may be present, each running one or more game 

servers. 
 

2.2. Over Provisioning 
 

A hosting company must ensure resources are 

available as and when required by players. Based on a 

SLA, the upper limit of resource requirement is known. 



However, during periods when a game server is 

underused or not used at all, allocation of the upper 

limit of resources is still required to satisfy a SLA in 

anticipation of game usage. This is because the game 

server itself is very much a ‘black box’ to the hosting 

company. As games of this genre are computationally 

expensive in terms of CPU cycles, over provisioning of 

the CPU is the main problem (an integral part of any 

game hosting SLA is CPU specification). The 

following example identifies over provisioning. 

We assume a company has 4 nodes and SLAs with 5 

clans (A, B, C, D, and E respectively). Figure 1 shows 

a snapshot of the current resource usage on all 4 nodes. 

To reduce over provisioning a simple calculation is 

used: if the cumulative maximum resource 

requirements of n clans are less than the resource 

availability on node x then place all these clans’ game 

instances on node x. To ensure the SLAs are satisfied 

we can see that on all nodes there are resources that 

will never be used (coloured black). In addition, in this 

current snapshot there are resources that are reserved 

but not used (coloured white). This occurs when less 

than the maximum numbers of players allowed by an 

SLA are participating. Only Game D appears to be 

utilising its full resource allocation. In an ideal scenario 

we could host all the existing system usage on just 

three nodes and save the expense of node 4. 

Although the wasted amount of resources may not 

appear too great on just 4 nodes, we must consider that 

there may be in excess of over a hundred such nodes. 

Cumulatively, the ratio of wasted resources shown in 

figure 1 scaled up to a cluster of 100 nodes may be the 

equivalent of 25 nodes. During a typical day, only 

25%-35% of resources are actually used at any one 

time (an even worse over provisioning problem than 

our example shows). 

 

 
 

Figure 1. Typical Over Provisioning of Game 

Servers. 
 

2.3. Possible Solutions 
 

A common approach to alleviating over 

provisioning is via virtualisation. For the purposes of 

this paper we assume virtualisation describes the 

process of easing an application’s implementation by 

trivialising the use of supporting services. In particular, 

allowing game servers to make efficient use of a cluster 

of nodes in an effort to minimise over provisioning in a 

transparent manner. Considering different deployment 

scenarios, two types of virtualisation are common: (1) 

hiding a single node instance to provide the illusion of 

multiple node instances; (2) hiding multiple node 

instances to create the illusion of a single node. 

Approach (1) allows multiple operating systems to 

co-exist independently of each other on different virtual 

nodes that share the same physical node. This has the 

advantage of allowing game servers that have different 

operating system dependencies to be co-located on the 

same physical node. Although this may provide more 

combinations to the hosting vendor for game server 

deployment, this approach does little to solve over 

provisioning: only allowing the same configuration as 

seen in figure 1 in terms of wasted resources. In 

addition, the overhead of node level virtualisation 

comes with additional resource overheads. 

Approach (2) is commonly termed machine 

aggregation. A number of solutions exist, the most well 

known being the Parallel Virtual Machine (PVM) [3] 

and Message Passing Interface (MPI) [2] (in fact any 

standard distributed systems programming architecture 

may be used). Using these solutions a developer can 

create their applications with the ability to exploit 

parallel execution via associated libraries (e.g., 

PVM++ for C++). However, such systems are 

inappropriate for the hosting of game servers as the 

game server code is unavailable to a hosting vendor. 

In principle approach (2) would solve our over 

provisioning problem as game servers could share 

resources over a cluster. However, this has to be 

achieved without altering the game server 

implementation. 
 

3. Implementation 
 

3.1 MOSIX 
 

An approach that provides the benefit of approach 

(2), described in previous section, without the need to 

alter game server code may be possible via MOSIX 

[1]. In simple terms, MOSIX allows applications 

hosted on one node to utilise resources on another node 

as and when required in a transparent manner (e.g., 

when CPU usage nears 100% on host node). The unit 

of migration is a process in MOSIX. Figure 2 shows a 

‘best case’ scenario of employing MOSIX to alleviate 

over provisioning in the earlier example shown in 

figure 1. Game servers are only installed on nodes 1 

and 2, with node 3 used whenever it is required. Node 

4 is unused (and may be removed completely).  



MOSIX is implemented at the kernel level of the 

operating system (available on a number of Linux 

kernel versions). The decision when to migrate a 

process is made by MOSIX itself (using a number of 

resource sharing algorithms) or at a developer’s/user’s 

discretion. Each application is run on one node of a 

cluster (application’s home node) and appears to 

remain there: from the user level, this migration is 

transparent and even those processes that are actually 

executing remotely are displayed as executing on the 

home node.  

We chose openMOSIX (open source version) as our 

distribution for MOSIX. For our initial investigation 

we wanted to determine if the no-cost solution would 

provide benefit. There are technical differences 

between openMOSIX and MOSIX, but these are 

irrelevant in the context of this paper. 

 

 
 

Figure 2. Desirable Provisioning. 
 

3.2. Monitoring and Evaluation 
 

Figure 3 provides an overview of our system. Our 

approach is a standard monitor, evaluate and modify 

approach with the ability to manually override the 

automated evaluation step. In addition, performance 

metrics in graph form may be gained via a web 

interface. 
 

 
 

Figure 3. Overview of Resource Management 

Service. 
 

Resource monitors run on each machine with the 

admin tool, evaluator and node manager running on a 

single node not included in the cluster. Programming, 

for the most part, was achieved using Borne Shell 

scripting. The only exception was the admin and 

graphing tool which was developed in PHP. Other 

technologies could have been used, but employees of 

Alpha-Networks LLB tend to be UNIX administrators, 

making our choice of technologies comfortable with 

staff. 

The resource monitors record usage of a node (CPU 

in our case) in the logs. Periodically, the evaluator 

reads the most recent log data and determines a course 

of action: (1) do nothing; (2) add node to cluster; (3) 

remove node from cluster. The reason for adding and 

removing nodes is purely experimental at this stage and 

allows us to determine, over time, the number of nodes 

required to satisfy SLAs. Once a course of action has 

been decided, the evaluator informs the node manager. 

The node manager is a standard set of scripts used by 

administrators for manual cluster modification. 

However, our system now utilises such scripts without 

human intervention. 

The evaluator can be configured a number of ways 

based on the number of game servers running, the 

different types of game servers running and any 

knowledge the vendor may have of pending events 

(e.g., online game competitions between clans). In 

essence, the evaluator attempts to ensure only the 

required numbers of nodes are available. 
 

4. Performance 
 

We set up an experiment consisting of 4 nodes, with 

1 node having two game servers installed (similar to 

figure 2 without games C, D, and E). We chose nodes 

with a lower specification as one would usually require 

for supporting a game server. This was done for two 

reasons: (1) ensure we do exhaust CPU resources; (2) 

see if it is possible to provide players with the illusion 

of a higher specification node by combining a number 

of low specification nodes (financial incentive). The 

machines used in the cluster were PII 400 MHz-

128MB RAM with Linux Redhat 9 as the operating 

system. 

There are a number of popular game servers we 

tried: Counter Strike, Half Life 2, Unreal Tournament, 

Call of Duty, and Quake 3. Unfortunately, only one 

game server (Quake 3) could benefit from 

openMOSIX. The implementation style of an 

application plays an important role in determining if 

openMOSIX can be of benefit. Our assumption is that 

the threading model used in the majority of game 

servers is not suited to openMOSIX process migration. 

Excessive process handling is viewed as a performance 

inhibitor for real-time applications (like game servers), 

so avoiding their use is desirable (but not in our case). 

For the purposes of the initial experiment we simply 

want to determine the performance gain from adding 

and removing nodes from the cluster and if there are 

any nodes that are never used. 

In each experiment we started the game servers (A 

and B) with 20 players on each (considered a high load 



for a game server). 19 of the players were bots (server 

controlled entities that act as players). 
 

 
 

Figure 4. CPU Usage on Hosting Node. 
 

The use of bots is common when clans wish to fill 

up their spare capacity, but do put additional strain on 

servers. We start with 1 node in the cluster (home 

node). We had a simple calculation to determine when 

to add and when to remove a node from a cluster: add 

node if home node CPU usage exceeds 80% remove 

node if home node CPU usage drops below 30%. As a 

safeguard to ensure resources are available, if more 

than one game starts at the same time on a single node 

1 node is added to the cluster. In addition, if no games 

are running then only a single node is allowed in the 

cluster (home node). To ensure a change in player 

activity (CPU requirements) a map change event occurs 

on one of the game servers at 7 minutes (a new map is 

loaded and play is suspended for approximately 2 

minutes). 

All our experiments yielded similar results and 

figure 4 shows a graph outlining the progress of the 

CPU usage on the home node (taking a snapshot of a 

typical experimental run). At around 3 minutes the 

game servers start and play commences (A and B) and 

1 node is added immediately (2 nodes in cluster). After 

4 minutes another node is added to cope with excessive 

demand (3 nodes in cluster). At 7 minutes a map 

change event occurs in B, resulting in a node been 

removed from the cluster (but play continues on A, 2 

nodes in cluster). At 9 minutes the new map finished 

loading and play continues on both game servers (A 

and B), requiring a node to be added (3 nodes). At 12 

minutes both games finish and nodes are progressively 

removed from the cluster (2 nodes then 1 node).  

From the graph we can see that CPU usage is never 

exhausted. However, from a clan’s perspective the 

question is ‘does the player witness unacceptable 

performance?’ We judge this on the round trip time 

(ping) from player consoles to game server.  

In the experiments all players were on the same 

LAN as the game servers, so ping times were not an 

issue due to high latency of the network (as on the 

Internet). Therefore, increases in ping times are due to 

server overloading. A simple experiment using a lightly 

loaded game server was used to gain the average ping 

time for our environment (20 - 30 ms). Repeating our 

initial experiment without openMOSIX players 

witnessed ping times rising to over 200ms (which 

renders a game unplayable). In fact, one of the servers 

became unavailable for use (players kicked off) due to 

excessive loads: the server is timed out by player nodes 

and so is not seen as an option on their consoles. With 

our system in place the ping times stayed within the 20 

- 30 ms barrier as expected. So, not only have we 

utilised resources more efficiently, we have made low 

specification nodes provide a level of service not 

possible without our approach.  

Node 4 was never used and may be removed 

permanently from the configuration (saving 1 node). 

For the price of three low specification nodes we are 

gaining the performance of a high specification node. 

The game servers are sharing resources more 

efficiently compared to single node installs. 
 

5. Conclusion 
 

We have demonstrated that off-the-shelf solutions 

coupled with simple monitoring and evaluation 

techniques can provide efficient automated resource 

management for game servers. Although only one type 

of game server benefited in our experiments (Quake3), 

it is hoped that the continual improvements to MOSIX 

will provide similar results for modern game servers. 

Therefore, it is quite conceivable that a game server 

hosting company may: (1) provide more game servers 

using the same resources; (2) provide the desired QoS 

with low specification machines.  

Just in this limited approach, Alpha-networks LLP 

may limit their overheads: more clans can be supported 

on the existing cluster and nodes have a greater 

lifespan as they still provide useful processing 

resources after they would otherwise be viewed as 

outdated. In addition, SLAs may now be tailored 

towards gaming experience instead of node 

specification. 
 

References 
 

[1] Barak, A., and La’adan, O. “The mosix multicomputer 

operating system for high performance cluster 

computing”, Future Generation Computer Systems 13, 4–

5, 361–372, 1998 

[2] M. P. I. Forum, “MPI: A message-passing interface 

standard”, University of Tennessee, Tech. Rep. UT-CS-

94-230, 1994 

[3] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., 

Mancheck, R., AND Sunderam, V., “PVM Parallel 

Virtual Machine, A User’s Guide and Tutorial for 

Networked Parallel Computing”. MIT Press, Cambridge, 

Mass, 1994 


