
Runtime Evolution for Online Gaming: A Case Study using
JBoss and Drools

Lei Zhu
School of Computing Science

Newcastle University
NE1 7RU

+44-(0)-191-222-6053

lei.zhu1@ncl.ac.uk

Graham Morgan
School of Computing Science

Newcastle University
NE1 7RU

+44-(0)-191-222-7983

graham.morgan@ncl.ac.uk

ABSTRACT
In this paper we describe a rule based approach to online game

development. Our goal is to ease the evolution of an online game

by allowing far reaching change in gaming scenarios after game

deployment has occurred and during game play. This is achieved

by making use of a rules based engine (Drools) within the JBoss

platform. We use a simple gaming scenario to demonstrate how

far reaching change is possible without the difficulty of altering

program code when rules are separated out from other application

level logic.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/server

General Terms
Management, Experimentation, Human Factors, Languages

Keywords
Online gaming, middleware, rules engines

1. INTRODUCTION
There are a number of commercial solutions to online gaming

within which players may participate in virtual worlds that are

persistent in nature. Such games are commonly termed Massively

Multiplayer Online Role-Playing Games (MMORPGs), which is

usually shortened to MMOs within the industry. Vendors generate

revenue from such gaming environments by regular financial

subscriptions made by players and/or from the value of virtual

world artifacts (e.g., virtual land sales, percentage take from the

inter-player trading of virtual world artifacts, sale of additional

vendor created virtual world storylines and artifacts).

Key to the commercial success of an MMO is the ability to attract

and then retain players. The amount of financial revenue

associated to an MMO business venture is directly related to the

number of regularly participating players in a virtual world: more

players relates to more revenue. The number of players is

commonly used as the measure on which an MMO is judged.

Attracting players to an MMO is not straightforward, and requires

the typical advertising campaigns one may witness for the

popularizing of many products. However, the mechanisms for

retaining players and ensuring the longevity of a business venture

must be achieved within the MMO itself.

Player interest must be maintained over prolonged periods of

time, appropriately measured in years. Therefore, an MMO must

continue to provide new and challenging scenarios to encourage

player participation. This can be achieved by periodically

introducing new content (e.g., artifacts, rules, stories, areas) and

ensuring all content exhibits a degree of persistence to provide a

heightened sense of continuing community. As such, the content

of a virtual world an MMO supports will, over time, increase.

Such an increase in content will require additional world

maintenance and, if not achieved in a highly regulated manner,

may raise the probability of world failure; either in part or

completely (e.g., [1] [2]).

Current engineering practices dictate that the requirement for a

highly evolving, persistent, virtual world must be weighed against

the requirement for a correctly functioning, always available

simulation. This is mainly due to the manner in which change is

afforded at the coding level via manual updates. This approach

has resulted in the management of change in an ad-hoc manner

and severely limits the ability to introduce far reaching change

while ensuring the correctness of a simulation.

One must realize that this problem of achieving a failure free

approach to runtime maintenance and adaptability for distributed

applications is not solely within the domain of MMOs (e.g, [3]).

However, MMOs do provide a highly visual view of the problem.

In addition, MMOs have timely requirements and player-to-player

interactions that add to the difficulty of application maintenance.

In this respect, MMOs provide an excellent case study for

attempting techniques to ease the maintenance of real-time

distributed application with persistent properties [4].

In this paper we consider the difficult problem of MMO

maintenance and adaptability in the context of evolving game

play. That is, rather than concentrate on the management of

artifacts we wish to actually change the rules that govern gaming

scenarios. This approach is quite unique in this area as work to

this date has been preoccupied with the management of persistent

data (e.g., cataloging, inventory, retrieval).

A reason for tackling the rules as opposed to the objects contained

within a simulation is that by changing rules one can create quite

diverse gaming environments. Another reason is that changing the

rules is considered a challenging aspect of MMO maintenance, as

rules are encoded throughout the implementation (possibly

throughout the program code representing many different virtual

world artifacts). Successful tackling of this problem will promote

the runtime diversity and longevity of MMOs.

The next section identifies related work and provides a clear and

concise description of the problem. Section 3 identifies our

approach and provides justification for our approach. Section 4

presents the implantation representing our case study and is used

to exemplify the potential of our approach. Section 5 draws

conclusions from our work and identifies the possibilities for

future work.

2. Background
In this section we clarify the context of the work. The

implementation scenario is described and what we mean by game

play evolution is presented. Academic work does not directly

address this problem (in the context of online gaming); therefore

we present approaches taken in industry to handle game play

evolution.

2.1 Implementation Scenario
Persistent virtual world implementations are server based,

allowing vendors to regulate the provision of ever evolving

alternate realities to maintain player interest and, most

importantly, restrict participation to subscribed players. Player

consoles connect to a server that provides players with access to a

virtual world. Typically, a player’s console holds a sub-set of

game state with players informing each other of their actions via

the exchange of messages between consoles. Such communication

is achieved via a server, allowing the regulation of player

interaction and game state to be recorded and stored onto a

persistent medium if required.

To satisfy the demand for processing resources, clusters of servers

are employed to cumulatively maintain game state and manage

player interactions. The additional processing resources required

to support an increase in player numbers is satisfied via the

addition of servers to a cluster. This approach to server cluster

configuration will be familiar to any developer working with

scalable service solutions found in almost all Internet applications;

utilize a collection of geographically co-located nodes organized

into a cluster that cumulatively support online services (e.g.,

search engines, e-commerce, enterprise information portals). Such

nodes are standard computers in their own right, and may operate

as service providers independently of each other. Such computers

are general purpose and not necessarily tailored for high

performance multi-processor solutions, making them a cost

efficient approach to server side scalability.

S1

S2

S3

C1

Application

logic tier

Data store tier

Load

balancer

(NAT)

Server cluster

technologies

C2

Load

balancer

(NAT)

Figure 1 – Classic n-tier server side solution.

Figure 1 provides an overview of a typical server cluster solution

for providing scalable online worlds. Although a simplified view,

this will suffice for descriptive purposes. The load balancer

ensures players are directed to an appropriate server that may

satisfy their service requests (e.g., updating avatar appearance or

location). The application logic is where user participation is

enacted and overall governance of the virtual world occurs (e.g.,

avatars fighting, trading artifacts between users). Artifacts,

including player’s avatars, which populate the virtual world,

together with their current state are stored in the data store tier and

retrieved as and when required by the application tier. Updates

made to persistent artifacts in the application logic tier must be

registered in the data store tier to ensure continuity of the virtual

world.

2.2 Game Play Evolution
Ignoring extensive philosophical arguments, it is sufficient to state

for the purposes of this paper that we consider a gaming scenario

to be a collection of rules, content and associated players. Content

may be viewed as any number of objects to be manipulated by

players while adhering to the rules governing a game. Rules are

stated in such a manner as to be clearly understood within the

context of a gaming environment. Our work here is based on the

premise that by changing the rules of one gaming scenario, but not

the content nor the number of players, we may create additional

gaming scenarios.

The difficulty of evolving content may be highlighted by

considering the following scenario, similar to the civilization type

games from Sid Meier [4].

In a virtual world that already allows players to navigate ships

between ports, we wish to evolve an economic market by

introducing “trade” and “cargo”. Once introduced, players will be

able to trade between ports via ships carrying cargo. There is a

requirement to modify the artifact ship to enable the carrying of

cargo. The new concept of trade will require modification to the

rules governing the virtual world itself. Ports will assume the role

of trade hubs and must be enhanced to recognize their role in

trading.

In our example it is not sufficient to just add content, but existing

content (ships, ports) must also be altered to enhance them with

the ability to participate in trade. This requires updates in the data-

store tier (e.g., amount of cargo that a ship can carry) and updates

in the application logic tier to enhance functionality (e.g.,

unload/load cargo). Furthermore, other artifacts not mentioned in

our example must be designated as cargo. This in itself will

require updates to other artifacts in the data-store tier (e.g.,

weight, size, and owner) and additions in the application logic tier

(e.g., in transit, set owner, and change value). Finally, the concept

of trade itself is quite fundamental and not easily captured within

one single artifact, requiring recognition in the rules governing a

virtual world (e.g., supply, wealth, and exchange).

One may envisage creating a game that will allow this progression

of evolution to unfold in a natural seeming manner. In fact, the

Civilization series of games base their popularity on just such a

progression, with players directing the game through a finite

choice of human discovery and endeavor. However, in the context

of persistent virtual worlds populated by many players the

problem intensifies and becomes a challenging research oriented

issue:

1) Consistency of the virtual world must be maintained for

all players (this is a shared experience)

2) The evolution of game play may not have been realized

at game design/implementation time.

When game play scenarios change they must change in a

consistent manner, that is, players participating must be presented

with the same shared experience. Not to achieve this would be to

engineer an unfair scenario. Unfortunately, unlike Sid Meier’s

Civilization, the world’s we are concerned with are persistent and

the manner with which game play may change may only be

determined once the virtual world has gone live (not pre-

computed and finite – too limiting of scope). Therefore, no

forward planning for a particular type of game play scenario is

feasible.

In our example we identified changes required to content and

rules. Changing content, although difficult and still a challenging

research problem may be achieved. However, changing the rules

is a challenge that our example clearly shows to be almost

impossible if such rules are not easily accessible, even though rule

change may bring about the most significant game play evolution.

2.3 Industrial Approaches
Faced with the problem of content management, vendors are

restricted to manual updates by their own developers or by players

themselves. Vendors providing MMOs may have good reasons to

manage content, for the purposes of coherent storylines and

directing the overall look and feel of a gaming scenario. However,

this is a burdensome task when millions of artifacts exist.

Therefore, an alternative approach has arisen where players are

encouraged to create such content, albeit at the expense of a

vendor’s ability to direct gaming scenarios.

When vendors manage content the use of client side updates

coupled with additions at the server side is common (e.g., [5]).

Updates to client software (given or sold to a player to afford

access to a vendor’s MMO) may be an additional revenue stream

for a vendor. Such updates are achieved by the vendor releasing

“expansion packs” (software updates) which the player must

purchase to participate in new gaming scenarios. To ensure

existing players may continue to participate without “expansion

packs” the vendor isolates new scenarios from existing content.

This is achieved by adding a new area to a virtual world. In

reality, existing content is not evolved, but increased in the form

of additional areas.

Second Life [6], by Linden Lab, allows player content creation

with a financial revenue model based on real-estate and trading:

the main type of revenue for Linden Lab relates to the purchase of

land and paying of ground rent. An innovative aspect of Second

Life is the ability players have for creating content. Such content

may then be traded between players. No client side updates are

required to access new content. A scripting language allows

artifacts to be instilled with behavior, allowing players to provide

their own virtual world scenarios. This approach provides Second

Life players with the most powerful content creation tool

available today for MMOs with players providing a wealth of

content.

Existing approaches to vendor and player derived content

evolution can’t realize our trading example as existing content

cannot be changed appropriately to accommodate new content. In

Second Life, propagation of change from one artifact to another is

limited and inhibited between artifacts belonging to different

owners. Even using such an inhibitive approach Second Life has

been plagued by problems (failure of simulation due to erroneous

scripts [1]). The more controlled approach used in vendor driven

content change is viewed as a safer option (but failures still

happen [2]). However, this safety has come at the expense of

limiting existing content updates to simple bug fixes and only

allowing new content distinct from existing content. The thought

that the actual rules governing a gaming scenario may be altered

has not been considered (or if it has, has never achieved fruition).

Emphasis in current approaches has been placed on content

creation and minor modification. Fundamentally, all existing

approaches severely limit content evolution in favor of safety and

the programming burden is immense. Rules are left alone.

3. Experiment
In this section we describe our case study in which we attempt to

demonstrate that rule change may be possible if achieved with the

appropriate toolset. We attempt our work using well known

software commonly used in scalable enterprise solutions over the

Internet. This way, our approach fits the diagram in figure 1 and

should be applicable for online game development [8].

3.1 Rule Engine
In recent years engineers of e-commerce solutions have begun to

make use of rule based approaches in the construction of their

applications. A number of server side middleware products now

include rule based tools as part of their application development

support. As business practices are well attuned to operating within

particular parameters governed by rules, efforts to construct

software tools and techniques to ease the development of business

oriented applications by allowing rules to be clearly stated have

preoccupied a number of researchers (e.g., [7]). By separating the

business logic from other aspects of application implementation

one may alter business rules without a requirement to manually

update a number of code fragments within the application tier of

the server side. In such applications, the rules become a clearly

identifiable (and manipulative) aspect of an overall application.

This has proved successful in the development process as rules

that were not determined accurately at design time could be

tailored (or even created) even after a system has gone live.

Initially, rule based software tools originate from work carried out

in the artificial intelligence (AI) research community. Work

carried out in Expert Systems may be considered rule based with

such research eventually taking a number of directions, most

prominently helping to create the Business Rule Management

Systems that are the subject of this paper. There are a number of

rule based systems available for programmers to make use of, but

of most interest to MMO developers are those found in distributed

systems middleware solutions (e.g., JavaEE, .NET). For this

reason we chose the JBoss platform and Drools engine [8] (others

are available, but this choice was made due to our familiarity with

JBoss).

3.2 Approach
As a first step towards evaluating the appropriateness of utilizing

a rules engine for use within gaming environments we consider a

very simple scenario. A board game for two players that

resembles the well known game of “noughts and crosses” (also

known as “tic-tac-toe”) is used as the demonstrator. This game

was chosen as the rules may be varied any number of ways to

create distinct gaming scenarios.

(i) (ii)

Figure 2 – Naughts and Crosses

In figure 2 there are two gaming scenarios presented. In 2.i there

is the standard game where there are nine possible positions to

place two types of game play pieces. Two players take it in turn to

place their pieces on the board. A player wins if they achieve

three of their own pieces in a row. In 2.ii the game is varied.

Players still take turns, but now the board is bigger and the

winning line achieved by spelling the word “OXO”.

Possibilities for constructing varying different gaming scenarios

are, in theoretical terms, infinite. However, assuming no change to

player numbers then variance of grid size, winning word length,

winning word pattern and player turns presents a finite set of

changeable parameter. Our challenge is:

1) Separate rules from the implementation code

2) Implement using JBoss (Java) and Drools (rules)

3) Vary game by changing rules

4) Never alter Java code

After starting with the most simple scenario (figure 2.i), a player

may instruct, by specifying rules arbitrarily, what gaming scenario

they desire (even mid game). As this is a JavaEE implementation,

the resultant game is easily prepared for online access.

3.3 Implementation
The game is implemented in three distinct parts as shown in figure

3. A client is built using the Java language. The client serves

solely as an interface to the game and allows players to place their

pieces on the game board. The client has no rules governing the

game encoded within it, however, the client may realize what

constitutes an appropriate placement of a piece on the board (i.e.,

piece must reside within an empty space). The initialization of the

client (determining board size) is achieved with a request to the

server. Once the game is being played the client can take requests

from players. The client will not allow players to go out of turn.

Rule Engine

(Drools)

Code (Java)

Client 1

Client 2

JBoss Application

Server)

Figure 3 – Overview of implementation

Once a turn has occurred the client informs the server where a

piece has been placed. A model representing the gaming arena is

maintained by the server with information received from clients

used to update this model. The model reflects what the players

see, but has the ability to evaluate each move using the rule

engine. The server communicates all moves to the rule engine.

Once the rule engine has evaluated a move and indicated an

outcome, this outcome is used to update the model held by the

server. Once the model has been updated the server transmits the

updated state to the clients. A number of outcomes are possible

from a client move: invalid – the move is deleted and state rolls

back; progression – the move progresses the game state; winning

– the move wins the game; finish – no more moves possible.

3.4 Programming
With any technology there is a learning curve. Although the

authors are proficient in programming languages and middleware

technologies (e.g., JavaEE, .NET), this was the first time a rules

engine had been used. However, the rules engine proved to be

reasonably intuitive to use once syntax and semantics had been

mastered. Therefore, we assume any programmer should be able

to develop simple rules with minimal effort after a number of

hours study and utilize the advanced features of the rules engine

within a reasonable amount of time. As of writing this paper, we

do not profess to be experts in creating rules using Drools; others

may see shortcomings in our descriptions. However, we are able

to use Drools sufficiently well for our purposes.

For comparison, we now consider a rules based approach using

the rule engine and one where the rules are encoded within Java.

We consider the programming task of identifying if the winning

scenario of four pieces of the same type occurs in a line (column,

row or diagonal). We assume the grid is 4x4. The process is

simply a search for a particular pattern. There are more efficient

ways for searching, but we simply identified a brute force

approach for clarity.

public boolean isGameWon (int player) {
// check all columns whether 4 same
symbols exist
for (int x = 0; x < 4; x++)

{
 int count = 0;
for (int y = 0; y < 4; y++)

{
 if (data[x][y] == player)
 count++;
 }

if (count ==4) return true;
}

 // repeat for row and diagonal

Figure 4 – Expected (part) code for implementing rule

Figure 4 shows part of the Java code used to identify a winning

row of 4 pieces the same. Two further pieces of code were written

to determine the identification in the other directions (row and

diagonal). In a typical game engine such code would be optimized

and such optimization may become tightly coupled to other

aspects of the game implementation. For example, one would not

search all the game board each play but concentrate only on those

areas that could be affected by the last move being assessed and

consider only the player who has just completed their move.

rule "Win with the catercorner2"
when
 $mainStatus :ArrayofSymbolStatus(

playerholder != -1,
$x : x,
$y : y,
$playerholder : playerholder)

$alarms : ArrayList
(
 size >=

(RuleCommon.SUC_NUM_OF_ROWS_COLS - 1)
)
from collect(

ArrayofSymbolStatus(
playerholder ==

$playerholder,
x >= ($x -

RuleCommon.SUC_NUM_OF_ROWS_COLS + 1),
 x < $x,
 $x1 : x,
 y == ($y - $x1 + $x)))

then
 ruleCommon.wonGame();

end

Figure 5 – Implementation of rule in rule engine

Figure 5 shows the equivalent rule as shown in figure 4, but this

time represented in the rule engine format. The first obvious note

to take is that the complete rule is not as substantial as the whole

Java equivalent (only a third of the code is shown in figure 4). In

addition, the rule captures the notion of identifying a winning

scenario in a manner independent from the Java approach.

Optimization of the rule is not possible as one would optimize the

Java implementation. However, this is not a drawback. The rule

engine abstracts the concern of optimization away from the

developer and uses well known optimization techniques to search

the memory space of the problem. This has been an area of

research for a number of years; it is wise to make use of it in such

an engine.

So far we have considered a winning rule that may be tailored,

irrelevant which language it is written in: with a little foresight we

can structure the java code so all it takes is parameter values, and

not a change to the code, to test for winning lines of arbitrary

length. A more problematic scenario is when the winning line

pattern changes. Consider the rule described in figure 6.

rule "Win with the same column"
 when
 $mainStatus : ArrayofSymbolStatus
(playerholder != -1, $x : x, $y : y, $playerholder :
playerholder)
 $alarms1 : ArrayList($size1 : size)
 from collect(ArrayofSymbolStatus
(playerholder != -1,
 playerholder == $playerholder,
 x == $x,
 y > $y,
 eval((y - $y) % 2 == 0),
 y <= ($y +
RuleCommon.SUC_NUM_OF_ROWS_COLS - 1)))
 $alarms2 : ArrayList($size2 : size)
 from collect(ArrayofSymbolStatus
(playerholder != -1,
 playerholder != $playerholder,
 x == $x,
 y > $y,
 eval((y - $y) % 2 == 1),
 y <= ($y +
RuleCommon.SUC_NUM_OF_ROWS_COLS - 1)))
 eval(($size1 + $size2) ==
(RuleCommon.SUC_NUM_OF_ROWS_COLS - 1))
 then
 ruleCommon.wonGame();
end

Figure 6 – Variable pattern winning rule

In figure 6 a rule has been designed to test for winning lines that

spell alternate pieces. A substantial change to the java code shown

in figure 4 would be required for this scenario. One may assume

that a programmer, through good programming practices, could

have foreseen the need to identify variable sized grids and

winning line lengths. However, the prospect of the winning

pattern changing formats may not have occurred to them.

The rule shown in figure 6 was created and deployed after the

game had been executed on the platform. There was no need to

alter any programming code of the server and the client and the

game changed without problems during runtime.

4. Conclusions
The work presented here, although in its earliest stages,

demonstrates that rule engines can ease game evolution. This is

achieved by allowing developers to safely upgrade, delete or

create rules governing a simulation during runtime. There is no

need to alter actual program code. The separation of rules from

other aspects of implementation has proved beneficial in this

respect. To achieve a similar evolution in game play program

code would have to be changed during runtime, something that is

considered difficult to achieve in a safe manner. In essence,

modern rule based approaches used extensively in the e-

commerce engineering industry warrant further investigation by

MMO developers.

An interesting aspect of the work carried out is the realization that

optimization of rule execution is now removed from the ad-hoc

approaches of game developers to the rule engines themselves.

One may argue that optimization achieved by a programmer

specifically with the problem in hand may return more optimum

solutions. However, this assumes that the game play scenario has

actually been thought of during the initial construction of program

code. Optimization while updating existing code during runtime is

difficult for any programmer to achieve safely and correctly.

A difficulty encountered during development was the

identification of rules. Initial implementations resulted in

applications where the rules were partly in the rule engine and

partly in the client and/or server. This was only discovered when

game play was changed, and a realization that what was actually

part of the Java code was inhibiting change as it was rule

dependent. An interesting avenue for future work would be to

provide some tool to aid in determining how rule dependent a

piece of code is.

Changing the underlying rules governing a virtual world is

considered the most challenging aspect of game evolution in

MMOs (as opposed to simply adding content). This is highlighted

by our example in 2.2. However, when structured appropriately

this may appear to be a much more straightforward (or at least

attainable) goal than once thought.

5. REFERENCES
[1] Linden Lab, “Security and Second Life”,

http://blog.secondlife.com/2006/10/09/security-and-second-

life/, viewed August 2008

[2] CNet, “World of Warcraft' battles server problems”,
http://news.com.com/World+of+Warcraft+battles+server+p

roblems/2100-1043_3-6063990.html as viewed August 2008

[3] Milazzo, M., Pappalardo, G., Tramontana, E., and Ursino, G.
2005. Handling run-time updates in distributed applications.

In Proceedings of the 2005 ACM Symposium on Applied

Computing, Santa Fe, New Mexico, March 13 - 17, 2005,

New York, NY, 1375-1380

[4] Fraxis Games, “Civilization”, http://www.civilization.com/
as viewed September 2008

[5] Blizzard Entertainment, “WoW: Burning Crusades”,
http://www.worldofwarcraft.com/burningcrusade/, viewed

August 2008

[6] Linden Lab, “Second Life”, http://secondlife.com/, viewed
August 2008

[7] Oracle, “Oracle Business Rules: Technical Overview”,
available from Oracle Website: http://www.oracle.com

[8] Lu, F., Parkin, S., and Morgan, G. 2006, “Load balancing
for massively multiplayer online games”, In Proceedings of

5th ACM SIGCOMM Workshop on Network and System

Support For Games, Singapore, October 2006, NetGames

'06. ACM, New York, NY

[9] Mark Proctor et al. Drools Documentation. JBoss.
http://labs.jboss.com/drools/documentation.html

