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Abstract 
With large numbers of geographically dispersed clients, 
a centralized approach to Internet-based application 
development is not scalable and also not dependable. 
This paper presents a decentralized approach to 
dependable Internet based application development, 
consisting of a logical structuring of collaborating sub-
systems of geographically-apart replicated servers. Two 
implementations of an Internet auction, one using a 
centralized approach and the other using our 
decentralized approach, are described. To evaluate the 
scalability of the two approaches, a number of 
experiments are performed on these implementations 
and the results presented here.  
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1. Introduction 
 
We are concerned with a particular class of Internet-
based, server-centered applications whose user domains 
are typically large, geographically distributed, and 
perhaps expanding. Examples of such applications are 
on-line auctions, Internet gaming, etc. On-line auctions 
are continually expanding into diverse products ranging 
from second-hand goods to airline tickets and financial 
products. The well-known Internet auction provider, 
eBay [http://www.ebay.com] has recently entered into 
the real-estate markets. The size and the nature of the 
user domain becomes obvious when we observe that 
eBay runs upto 2 million auctions at any given time, and 
its systems typically interact simultaneously with 
millions of Internet based customers from all over the 
world. Internet games not only are becoming 
increasingly popular but are such that the more the 
number of players participating in a game, the more 
interesting the game becomes for every player. So, in 

Internet gaming, systems are required to deal with a 
large number of users whose requests (for example to 
move or shoot an object) must be processed in an 
ordered manner and the effect displayed in a timely 
manner.  

The applications with large and geographically 
dispersed client bases are currently supported in a 
centralised manner: client requests are sent (over the 
Internet)  to systems located in a central place for 
processing. This centralised approach has serious 
scalability problems. A customer (an auction bidder or a 
game player) who is close to the central server can have 
faster server access than a remote client, and thus may 
have an unfair advantage over the latter.  Further, as the 
number of simultaneously arriving client-requests 
increases, the server load increases – resulting in 
performance degradation. An unreplicated (central) 
server also constitutes a single point of failure. It has 
been recently reported that the eBay’s (central) server 
suffered an outage for 22 hours [11].  
The aim of this paper is to explore a decentralised 
approach that would admit scalability while enhancing 
client fairness and system availability and 
responsiveness.  

In our decentralised approach, the system 
consists of many, geographically-apart subsystems; each 
subsystem provides services to those users who are in its 
geographical domain, while frequently coordinating its 
activities with other subsystems so that the services it 
provides are also correct and consistent at the system 
level.  Observe that subsystems themselves can be 
replicas of the old centralised system that was once 
found adequate for a limited number of users. Figure 
1(a) depicts the essence of our approach. It shows the 
system to be made up of 11 subsytems which interact 
over the Internet or a privately owned network for fast 
message exchange. Each Si has a local client base which 
is the set of clients who choose to avail the global 
services through Si. There can be many factors (e.g. 
currency regulations, service fee) that may influence a 
client to choose a particular server, and we would 
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assume that the primary ones include geographical 
proximity and fast server access.  

Consider an activity A which can be an auction 
for a particular item or an instance of an internet game. 
If all participants of A are clients of just one server, say 
S1, then it is as if S1 is acting as the centralised server, 
except that there is an enhanced client fairness and 
system responsiveness. Suppose that the participants of 
A are distributed among the servers S1, S5 and S9. Now, 
the state variables that define the progress of A must be 
maintained consistently by these three servers. Thus, the 
cost of our decentralised approach is influenced by the 
impact of this communication between servers on the 
overall service latency for client requests. The objective 
of this paper are two fold. First, we assess the impact of 
server communications in the latency for processing 
client requests. Second, we assess the cost of replicating 
a server. Towards these objectives, we have 
implemented a two-server distributed auction system and 
compared its performance with a centralised auction 
system.  

The paper is organized as follows. Next section 
describes our distributed auction system. Section 3 
describes its implementation, in which two servers are 
used: one in Bolognia (Italy) and another in Newcastle 
(England), connected by the Internet. Section 4 presents 
results from experiments we carried out using the 
distributed and centralised auction systems. The 
centralised system has only the Newcastle server which 
processes requests from both England and Italy. Section 
5 concludes the paper. 
 

2. A Distributed Architecture 
 
2.1 Overview 
 
For ease of exposition, we shall assume in the rest of the 
paper that a client request received by a server is always 
a valid one that needs to be processed. This enables us 
to concentrate on a server’s core task of processing the 
requests. We also assume that a client request accepted 
by a server cannot be withdrawn. Further, we admit no 
server or communication failures, which are discussed in 
section 2.3. We regard the distributed system to be made 
up of many servers connected to each other via the 
Internet or a privately-owned, high-bandwidth network. 
Each server serves a local set of clients as in figure 1(a). 
A client will send their requests to its local server for 
processing. Periodically, a server multicasts the requests 
it has received so far to every other server in the system. 
These multicast messages are called episode messages, 
as their contents are used by each server to form the 

history of client requests accepted (so far) in the global 
system. The episode messages generated by a given 
server obey the following rule: every local client request 
accepted is referred to in one of the episode messages, 
and no two episode messages refer to the same client 
request. This is necessary to ensure that the global 
history constructed by each server represents any given 
client request exactly once. 

Implementing a distributed auction system is a 
challenging task, and requires, from systems and 
networks point of view, the following problems to be 
solved: 

 
1. Message Exchange: Imagine the system being 

comprised of tens of distributed servers. 
Requiring each server to multicast its episode 
messages periodically to the rest of the system, 
is not a scaleable way to build the system, even 
if one takes into account of the advances in IP-
multicast technology that uses programmable 
(multicast-aware) routers. So, a sensible 
structuring of the system is needed. For reasons 
of scalability, such a structuring should not 
particularly require a server to know, or 
multicast messages to, all other servers in the 
system. 

2. System Shrinkage: Imagine that, in a particular 
local server, there is no need to collaborate 
with other servers to satisfy client requests; it is 
better for that server to reduce its processing 
load by leaving the global system, so that only 
the interested servers communicate among 
themselves. So, any technology we use to 
implement the system must be capable of 
supporting dynamically changing groups. 

 
Addressing the second issue, completes the differences 
between our approach and the interconnected severs 
approach (described in [2]): the same objective is 
realised starting from diametrically opposite points. We 
start off with a default global environment, provide 
support for shrinking server base if there is no demand. 
In the other approach, environment starts off with the 
local server and support is provided for server base to 
expand when necessary.  
 
2.2 System Structure 

 
We structure the system of servers into a tree, rooted on 
a single server. Fig. 1(b) shows eleven servers arranged 
in a tree, with the root being server S11. Recall that 
servers can directly communicate with each other as 
shown in fig. 1(a) and this tree structure is a logical one 
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imposed in an attempt to make the inter-server 
communication scaleable; also, that each server caters 
for a local set of clients and has its own (local) clients 
registered directly with it. 

Adhering to the conventional terminology, the 
root server is regarded to be at the top-most level of the 
tree. A server is termed the parent of all those servers 
that are directly connected to it and are one level below; 
the lower level servers are termed the child servers of 
the parent. (In the tree of figure 1(b), S9 is a parent for 
S7 and S3, and is a child of S11.) A server (such as S1) 
that has no child is called a leaf server.  We do not 
require the tree to be a balanced one (though such a tree 
would improve the communication efficiency) nor a 
binary one as shown in the figure. What we do require is 
that the root server be connected to every other server 
either directly or via a sequence of parent of servers, and 
that every non-root server has only one parent.  

Based on the tree structure, servers are 
partitioned (not disjointly) into multicast groups: a 
group consists of one parent and all its children. Within 
a multicast group, servers know each other’s identifier 
and periodically multicast the episode messages. 
Referring to the tree in figure 1, the eleven servers will 
be divided into five multicast groups: {S11, S9, S10}, {S9, 
S7, S3}, {S7, S1, S2}, {S10, S8, S6}, and {S8, S4, S5}. 
Every server is in at least one group and a parent server, 
except the root, is present in two groups. For a parent 
server (such as S7), the group that contains its children is 
called its down-tree group and denoted as Gd; e.g., Gd of 
S7 is {S7, S1, S2}. For a non-root server, the group that 
contains its parent is called its up-tree group and is 
denoted as Gu; e.g., Gu of S1 is {S7, S1, S2}.  
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Figure 1. (a) Distributed System of Servers.  (b) 
Logical Tree of Servers. 

Partitioning the servers into multicast groups based on a 
tree structure, facilitates dissemination of episode 
messages in the following recursive manner. A non-root 
parent server periodically aggregates its own episode 
message with messages received from its children during 
the past period, and multicasts the aggregated episode 
message in its Gu. Thus, in its up-tree group, it 

represents the bids received by every server of the sub-
tree rooted on itself. The downward propagation of 
episode messages also work in the same way but in the 
downward direction: a non-root parent server 
periodically aggregates its own episode message with 
the messages received from other members of its Gu 
during the past period, and multicasts the aggregated 
episode message in its Gd; the root server periodically 
multicasts only its own episode message in its Gd. Recall 
that the formation and aggregation of episode messages 
are done in such a way that any given client request (sent 
to any server in the global system) is represented exactly 
once in the global history computed by every server.  

Seeking tree-based structuring for reasons of 
scalability is frequently done in the literature. For 
example, the concept of IP-multicasting for a large 
number of receivers, first presented in [20], assumes that 
the IP-enabled routers are arranged in a tree (with the 
router attached to the message sender forming the root). 
Well-known scaleable transport protocols [21,22,23] use 
this tree structure to guarantee end-to-end reliability 
requirements. The analysis of [12] also favours that 
servers in a large scale setting be arranged in a tree for 
message efficiency. Assuming a tree structure, however, 
requires addressing the task of the tree-formation.  

Given that the root is fixed, any of the 
appropriate tree forming algorithms readily found in IP-
multicast literature can be used to construct a tree, if one 
is not already formed. We briefly focus on the policy 
issues that define the scope of the ‘global’ system. 
Though we assume that all servers are included, by 
default, in tree formation, in practice, judgement would 
be exercised in the selection of servers to form the 
global system and hence the tree. This would depend on 
the expected demand in the market base associated with 
a particular server. We here note that selecting servers to 
form the ‘global’ system is similar to the explicit 
multicast model supported in [2]; also that we permit 
any number of servers (resp. local markets) to be 
included in the global system (resp. auction market). 
 
2.3 Reliability Issues 

 
2.3.1 Network Fault Model 

 
The distributed system described above has two 
subsystems: servers and the communication network that 
interconnects them. A server can fail, usually in various 
ways, and must be built reliably using internal 
redundancy so that a service remains available. Using 
well-known redundancy management techniques, 
reliable servers can be built. When the network is not 
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owned or maintained by the service provider, this “must-
be(-built)-reliable” approach does not work for the 
network, especially in the case of the Internet. So we 
first establish the weakest failure model the network 
must satisfy. The Internet generally provides a reliable 
communication (in the sense that what is sent is 
received, perhaps after a few retries) provided networks 
do not partition. So, the network assumption needs to be: 
 

1. NA1: provided that servers Si and Sj are 
correct, a message sent by one to the other is 
eventually delivered (asynchronous network). 

 
Meeting this assumption requires that communication 
path between any two servers, if broken, be eventually 
restored. NA1 enables the server communication to be 
reliable but not synchronous: a bound on how long 
messages can take to reach the destination cannot be 
known with certainty. 
 
2.3.2 Handling Processor Faults 

 
A processor can fail in many ways, and there are two 
extreme fault models. 
 

1. Byzantine Model: A faulty processor can fail in 
arbitrary ways. 

2. Crash Model: A faulty processor fails only by 
stopping to function (crashing). 

 
In what follows, we would assume the latter fault type, 
since the abstraction of crash failures can be 
implemented on top of a system of processor replicas 
subject to Byzantine faults, by running appropriate 
software protocols [13]. The following assumptions are 
usually made in implementing such an abstraction. 
  

1. NA2:  The network (typically a LAN) that 
interconnects processor replicas ensures that, 
provided that two replicas are correct, a 
message sent by one to the other is delivered 
within some known bound (synchronous 
network).  

2. A1: when two correct process replicas perform 
a given task with the same initial state, the final 
states they reach and any outputs they produce 
are identical. 

 
A1 is essential for process replication and holds true; 
NA2 permits less than one half of the replicas to be 
faulty. (Without it, only less than a third can be faulty 
[14]).  
 

2.3.3 An Implementation Framework 

 
We would adopt passive replication strategy to build 
reliable servers as it would enable a  replicated server Si 
to provide fast responses in the absence of faults. Figure 
5 shows the internal structure of Si.  ISi is the interface 
processor (front end) between n, n > 1, processor 
replicas and Si’s clients, and it is assumed reliable1. 
Further, NA2 is assumed to hold among ISi and the 
processor replicas. 
  

 

S   i   
1       S   i   

2       S   i   
n       

IS i 

...        

To/From clients    
  

To/from other servers From other servers 

 
Figure 2. Internal Structure of Server Si. 

 
In passive replication, only the highest ranked replica, 
called the primary (Si

1 in figure 2), processes, and 
responds to the requests; for every received request, it 
multicasts to other replicas the state changes effected 
and any response produced due to processing of the 
request. If ever the primary crashes, the highest ranked 
among the non-crashed replicas becomes the new 
primary and continues with the processing of incoming 
requests. The sever can provide services despite at most 
(n-1) replica crashes. 

An implementation of passive replication is 
done using the following services within Si. A reliable 
fifo multicast service (RMi) which ensures that if the 
primary crashes during a multicast, either all functioning 
replicas or none of them receives that multicast, and a 
group membership service (GMi) which promptly 
informs the functioning replicas of replica crashes and 
the order in which these crashes must be viewed with 
respect to message delivery order. (This property of 
synchronising crash notifications with message delivery 
order is known as view or virtual synchrony [3]). These 
services facilitate prompt selection of new primary after 
the existing one crashed, and guarantee that the 
survivors are in agreement on the last multicast the old 
primary made before it crashed so that the transfer of the 

                                                 
1 The router is assumed reliable (single point of failure) and uses a 
mechanism (such as round robin DNS) to determine which 
(functioning) server to direct an incoming message to. 
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processing role from the old to the new primary remains 
correct. The specification and protocols for RMi can be 
found in [15], and for GMi the specification in [3-9] and 
protocols (that use NA2) in [16-18]. 

Note that with passive replication, while every 
replica may receive the inputs, only the primary sends 
the server output to ISi and to other servers. Next, we 
describe how the (passively replicated) servers exchange 
episode messages. For simplicity we will consider a 
single multicast group G = {S7, S1, S2}(see figure 2), and 
assume that each server Si, i = 1, 2, or 7, is internally 
duplicated (n = 2) and Si

1 is the primary of Si. (With n 
=2, at most one replica can crash within each Si.) G can 
be configured to be G = {S7

1, S1
1, S2

1}, containing only 
the server primaries. Note that the members of G 
communicate with each other using an asynchronous 
network where only NA1 (not NA2) holds. Suppose that 
S7

1 crashes and an autonomous handling of this crash 
involves S7

2 detecting the crash of  S7
1 (through GM7 

operating within S7) and joining G. S1
1 and S2

1 (the 
surviving members of G) should not be entrusted with 
failure detection, as accurate failure detection is 
impossible over an aynchronous network [10]. Join 
operations are usually costly and time-consuming; so, 
we construct G containing not just the primaries but also 
the secondaries.  

The composition of G is shown in figure 3. We 
assume a reliable fifo multicast service (RMG) and a 
group membership service (GMG) within G. Using RMG, 
(only) primaries would multicast episode messages 
which are received by every member of G. Note that 
RMG and GMG must be implemented with NA1 alone. 
Many groupbased systems e.g. [3-9], can provide these 
services just with NA1. However, they use failure 
suspectors to handle crashes which must be switched off 
and membership changes be effected by failure 
notification multicast (in G) by a Si

2 when primary crash 
is detected through GMi. Observe that Si

2 can reliably 
detect the crash of Si

1 using the (local) GMi that is built 
with assumption NA2. Further, (the view synchrony 
property of) GMG will ensure that Si

2 is in agreement 
with other members of G over the last episode message 
that Si

1 had multicast in G before it crashed. Therefore, 
no episode message of Si will be left unsent in G when 
Si

2 promotes itself to the primary of Si.  
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Figure 3. Replicated Processors S1, S2, and S7 

forming a Group 

 

2.3.4 Server Group Shrinkage 

Suppose that S1 wishes to leave G due to lack of interest 
in its local group. This leave request can be easily 
handled by GMG by treating it as ‘announced crashes’ of 
both S1

1 and S1
2. Suppose that S7 also wants to leave G 

sometime after S1 had left. It cannot leave G until S2 
joins its Gu = {S7, S3 S9} (see figure 2(a)); otherwise S2 
will be left with no parent. As all the cited groupbased 
systems support joining of new members in such a way 
that the existing members view the joining identically 
with respect to the messages they delivered in the old 
and new configurations; hence, S2 joining {S7, S3 S9} 
can be achieved in a manner consistent with the on-
going multicasts within {S7, S3 S9}. 
 

3.Implementation of a Distributed Auction 
System 
 
3.1 Overview 
 
The auction system is structured as a number of market 
places that may be geographically separated over the 
Internet. A single server and a number of clients 
represent each market place; servers are structured 
hierarchically (one root server and two child servers), 
with clients placing bids and/or advertising items for 
sale via their local server. Servers are passively 
replicated, locally, to improve reliability within a single 
market place. Two replicas are used for replication 
purposes. Each server consists of four basic types of 
component: auction, reliability, distribution, group 
communication. Each component is implemented as a 
CORBA object. 
 
3.2 Auction Object 
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The auction object provides a number of services: 
 

• Seller – Allows the registration of seller details 
within the Bidding service. Contact details of a 
seller to enable buyers to trade with sellers are 
a minimum requirement and are managed by 
the seller service. 

• Buyer – Allows the registration of buyer details 
within the auction service. As with the seller 
service, the primary purpose of the buyer 
service is to provide sellers with the relevant 
details of a buyer to enable trading between 
buyer and seller. 

• Product – A product is made available to 
buyers by sellers via the product service. All 
the information required by buyers to enable an 
auction of a product is supplied by the product 
service (e.g., selling price, product description). 

• Trader – Manages the bidding process. Buyers 
may place bids and buyers/sellers may enquire 
about the bidding status of products (if the 
auction in use allows this). The trader service 
also enforces the appropriate style of auction 
(e.g., English, Dutch). 

 
Figure 4 gives a logical description of how these 
services collaborate to provide the bidding service.  
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Figure 4. Logical view of auction object 

services. 

 
3.3 Reliability Object 

 
Reliability object makes the server tolerant to a single 
processor crash. Each auction object replica (two in our 
system) is provided with a reliability object. A reliability 
object provides two basic functions: accepts requests 

from clients, implements passive replication policy. 
Figure 5 describes the handling of a client request; M1 is 
the initial client request. On receiving M1, R1 multicasts 
this request (M2) to other reliability objects (two in the 
diagram) and forwards M1 to its own auction object 
(M3). On receiving M2, R2 forwards M2 (M4) to A2. 
As this is a passive replication scheme, only replies from 
A1 are returned to the client (via R1). Replies from A2 
are ignored.  
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Figure 5. Reliability objects in a market place 

 
The reliability object may be co-located in the same 
addressable space as an auction object or may be in a 
different addressable space, possibly on another machine 
in the network. In the latter case, the reliability object 
and its associated auction object may fail independently 
of each other. In this scenario, when an auction object 
fails the reliability object instantiates a new auction 
object, gaining state for the new replica from existing 
replicas (via other reliability objects). When a reliability 
object fails, another reliability object instantiates a new 
reliability object and associate this new object with the 
existing auction object. Furthermore, any client requests 
that have arrived since failure must be forwarded to the 
new reliability object, which in turn forwards them to its 
auction object. 
 
3.4 Distribution Object 
 
Each auction object is assigned a distribution object. 
The distribution object is responsible for imposing the 
hierarchical structure of the global auction system and 
managing the distribution of episode messages 
throughout this structure.  

When auction objects are replicated, the 
distribution object is placed between clients and a 
reliability object (see figure 6). The distribution object 
accepts client requests (M1) and forwards them to its 
local reliability object (M2). The system administrator 
may determine the frequency a distribution object may 
multicast episode messages (M3). Episode messages 



7 

received by a distribution object (apart from its own) are 
disassembled into the original client request, each 
request is forwarded to the local reliability object (as 
M2). 
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Figure 6. The role of distribution objects in the 

market place. 

 
The distribution object of the passive replica (D2) does 
not receive any client requests nor does it send or 
receive episode messages. When the primary replica 
fails D2 assumes responsibilities of D1. 
 
3.5 Group Communication Object 
 
The group communication requirements of the reliability 
and distribution objects are satisfied by the Newtop 
service (a CORBA service) [24]. The Newtop service is 
a distributed service and achieves distribution with the 
aid of the Newtop Service Object (NSO). Each group 
member (reliability object or distribution object) is 
allocated an NSO. Group related communications 
required by a member are handled by its NSO.  

The Newtop service consists of three services 
implemented by corresponding objects within the NSOs: 
membership; invocation/multicast; and group 
management. The management service provides 
members with create, delete and leave group operations. 
The invocation/multicast service provides three group 
invocation operations (wait for responses from all, from 
majority, from one and an asynchronous, no wait 
invocation). The membership service maintains the 
membership information and ensures that this 
information is mutually consistent at each member. This 
is achieved with the help of a failure suspector that 
initiates membership agreement as soon as a member is 
suspected to have failed. 
 

4. Performance Evaluation 
 
To demonstrate the effectiveness of our decentralized 
approach, we present performance figures related to a 

restricted implementation of the hierarchical 
architecture; only a single server group is implemented, 
releasing the need for a root node. We experiment with 
centralized server and distributed two-server systems 
(both replicated and non-replicated versions 
considered). We measure the time it takes for a bid to be 
registered at all auction objects in the system from the 
moment a bid is sent by a client. These measurements 
should not be treated as ‘absolute’ figures, but rather as 
an aid to compare the effectiveness of our decentralized 
architecture over a centralized architecture. For a fair 
comparison, all experiments were conducted overnight 
during which load fluctuations over the Internet were 
small. Four different types of experiment were carried 
out: 
 

1. Centralised server non-replicated auction object 
2. Distributed servers (two) non-replicated 

auction objects 
3. Centralised server and replicated auction 

objects 
4. Distributed servers (two) and replicated auction 

objects 
 
Clients were configured to issue bids as frequently as 
possible; as soon as a reply is received another bid is 
issued. Client numbers were increased gradually from 
100 to 200 in increments of 10. At each of these 
increments, registering 100 bids for each client in all 
auction objects is timed, and the average is taken. 

Communications between clients and servers 
were enabled via the Internet. Pentium Linux machines 
were used as hosts for clients and servers. Replicated 
servers (when used) where located on different machines 
on the same LAN. All objects of a single server were 
compiled into the same addressable space (e.g., D1, R1, 
A1 in figure 6). The implementation language used was 
Java 1.1 and the ORB used was ORBacus 4.0b3 [19]. 
Clients and servers were located at Newcastle (England) 
and Bologna (Italy). Clients were always equally 
distributed between England and Italy. (That is, when 
we say the number of clients is 100, it is 50 in England 
and 50 in Italy.) In the single server cases, only 
Newcastle server is operational which is accessed by 
both Italian and English clients. 
 
4.1 Centralised Server, Non-replicated Auction 
Object 
 
To enable comparative analysis of the performance 
figures, the CORBA RPC time of a client in Italy 
communicating with a server (without distribution or 
reliability objects) in Newcastle was 94 ms (and 
approximately the same for client in Newcastle and 
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server in Bologna), the equivalent CORBA RPC 
between a single client and a local server  (e.g., 
communicating over the same LAN) was approximately 
6-7 ms for both Newcastle and Bologna.  

  

Graph 1 - Registering a bid - Single non-replicated server
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Graph 2 - Throughput - SIngle non-replicated server (in 
Newcastle)
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The first observation to be made is the time for a bid 
sent from a local client (Newcastle) to register in the 
auction object is far lower than the time taken to register 
a bid sent from a distant client (Bologna). This is 
expected, as the latency between the server and the 
distant clients is approximately 15 times larger than the 
latency between the server and local clients. Both, local 
and distant clients take longer to place bids when client 
numbers are increasing (shown by the upward slope in 
graph 1); doubling the number of clients doubles the 
time taken for bids to be registered. This indicates that 
the server may be overloaded, and this assumption 
appears to be confirmed by the slightly decreasing slope 
in graph 2 (throughput). 
 
4.2 Distributed Servers, Non-replicated Auction 
object 
 
Graphs 3 and 4 present the measurements when two 
servers are present, each serving local clients (Newcastle 
& Bologna). The time taken to register a bid at both 
servers is approximately 3 times slower than a client 
registering a bid at its local server (comparing graph 3 
with graph 1). However, in this scenario there are no 
distant clients. Therefore, no client suffers the extremes 
of poor performance witnessed when only a single server 

is present (distant clients 15 times slower than local 
clients) as shown in graph 1. 
 
 
 Graph 3 - Registering a bid - Distributed servers 

(Newcastle & Bologna) 
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 Graph 4 - Throughput - Distributed non-replicated  
servers (Newcastle & Bologna) 
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Another observation of interest is the degree of the slope 
of graph 5 compared to that of graph 1. Graph 1 shows a 
much steeper slope (for both Newcastle and Bologna 
clients) compared to graph 3. When two servers are 
present, increasing the number of clients does not have 
the same adverse effect on time taken to register a bid as 
when only a single server is present. In graph 6, the 
slope is still increasing when client numbers are 
increased, indicating that the server is not yet overloaded 
(as is the case when only a single server exists – shown 
in graph 2).   
 
4.3 Replicated Auction Objects (Centralised 
and Distributed Approaches) 
 
Tables 1 and 2 present the measurements for all 
experiments. These measurements indicate that the cost 
of passive replication is low. Replacing a non-replicated 
server with a passively replicated server increases the 
time taken to register a bid by approximately 1 – 5% for 
local clients and less than 1% for distant clients. This 
can be explained by the manner in which messages are 
processed by the primary. With reference to figure 5, the 
multicast to the replica group (M2) of the original bid 
(M1) is accomplished in parallel with the forwarding of 
M1 to the auction object (M3). Thus, the overhead of 
passive replication is the processing of M1 by the 
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reliability object and the time taken for M3 to be 
received and processed by the auction object. As the 
reliability and auction objects are compiled into the 

same addressable space, the cost of sending M3 is very 
low.   

 
 Number of clients 100 110 120 130 140 150 160 170 180 190 200 

Non-replicated Newcastle client 336 362 397 445 460 512 541 565 603 622 655

 Bologna client 4776 5261 5734 6225 6685 7173 7635 8126 8610 9073 9556

Replicated Newcastle client 341 377 413 443 471 504 566 581 619 664 689

 Bologna client 4778 5263 5740 6230 6693 7172 7666 8127 8626 9085 9593

Table 1. Performance of replicated and non-replicated auction objects for centralized approach  

 
 Number of clients 100 110 120 130 140 150 160 170 180 190 200 
Non-replicated Newcastle client 1006 1027 1088 1143 1144 1188 1208 1254 1266 1328 1349

 Bologna client 1015 1051 1061 1138 1146 1194 1211 1223 1285 1346 1336

Replicated Newcastle client 1027 1059 1102 1155 1168 1230 1219 1261 1314 1349 1365

 Bologna client 1049 1099 1121 1161 1209 1238 1250 1305 1340 1398 1427

Table 2. Performance of replicated and non-replicated auction objects for distributed approach

5. Conclusion 
 

In this paper we have described a hierarchic 
architecture to enable Internet-based applications to 
satisfy the quality of service and reliability 
requirements of a large number of geographically 
dispersed clients. We have demonstrated the 
effectiveness of our architecture by implementing, and 
gaining performance measurements from, a distributed 
auction system. 
 The implementation framework addresses two 
important issues: (i) building a reliable/available server 
through process replication, and (ii) enabling a group 
of such servers to communicate in a flexible manner 
that allows a server to leave the system if its 
participation in the group is no longer required.  The 
latter is achieved through the use of group management 
techniques that are well established both in theory and 
practice. By exploiting the fact that a server is 
internally replicated over a synchronous network, we 
circumvent the unsolvable problem [10] of accurate 
failure detection in an asynchronous network (e.g. the 
Internet), which the servers use to communicate with 
each other. 
 The performance measurements presented 
here indicate that our solution achieves scalability, as 
the total load is shared amongst many servers. 
Furthermore, by presenting clients with geographically 
local servers, the overall quality of service provided by 
Internet-based applications to large numbers of 
geographically dispersed clients is improved. 
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