
1

Measuring the Cost of Scalability and Reliability for Internet-based, server-
centered applications

Paul Ezhilchelvan, Mohammad-Reza R.Khayyambashi, Doug Palmer and Graham Morgan

Department of Computing Science, University of Newcastle
Newcastle upon Tyne NE1 7RU, UK

{Paul.Ezhilchelvan, M.R.Khayyambashi, D.J.Palmer, Graham.Morgan}@ncl.ac.uk

Abstract
With large numbers of geographically dispersed clients,
a centralized approach to Internet-based application
development is not scalable and also not dependable.
This paper presents a decentralized approach to
dependable Internet based application development,
consisting of a logical structuring of collaborating sub-
systems of geographically-apart replicated servers. Two
implementations of an Internet auction, one using a
centralized approach and the other using our
decentralized approach, are described. To evaluate the
scalability of the two approaches, a number of
experiments are performed on these implementations
and the results presented here.

Keywords and Phrases: scalability, distributed servers,
multicast groups, passive replication, reliable multicast,
membership service, synchronous and asynchronous
networks, CORBA.

1. Introduction

We are concerned with a particular class of Internet-
based, server-centered applications whose user domains
are typically large, geographically distributed, and
perhaps expanding. Examples of such applications are
on-line auctions, Internet gaming, etc. On-line auctions
are continually expanding into diverse products ranging
from second-hand goods to airline tickets and financial
products. The well-known Internet auction provider,
eBay [http://www.ebay.com] has recently entered into
the real-estate markets. The size and the nature of the
user domain becomes obvious when we observe that
eBay runs upto 2 million auctions at any given time, and
its systems typically interact simultaneously with
millions of Internet based customers from all over the
world. Internet games not only are becoming
increasingly popular but are such that the more the
number of players participating in a game, the more
interesting the game becomes for every player. So, in

Internet gaming, systems are required to deal with a
large number of users whose requests (for example to
move or shoot an object) must be processed in an
ordered manner and the effect displayed in a timely
manner.

The applications with large and geographically
dispersed client bases are currently supported in a
centralised manner: client requests are sent (over the
Internet) to systems located in a central place for
processing. This centralised approach has serious
scalability problems. A customer (an auction bidder or a
game player) who is close to the central server can have
faster server access than a remote client, and thus may
have an unfair advantage over the latter. Further, as the
number of simultaneously arriving client-requests
increases, the server load increases – resulting in
performance degradation. An unreplicated (central)
server also constitutes a single point of failure. It has
been recently reported that the eBay’s (central) server
suffered an outage for 22 hours [11].
The aim of this paper is to explore a decentralised
approach that would admit scalability while enhancing
client fairness and system availability and
responsiveness.

In our decentralised approach, the system
consists of many, geographically-apart subsystems; each
subsystem provides services to those users who are in its
geographical domain, while frequently coordinating its
activities with other subsystems so that the services it
provides are also correct and consistent at the system
level. Observe that subsystems themselves can be
replicas of the old centralised system that was once
found adequate for a limited number of users. Figure
1(a) depicts the essence of our approach. It shows the
system to be made up of 11 subsytems which interact
over the Internet or a privately owned network for fast
message exchange. Each Si has a local client base which
is the set of clients who choose to avail the global
services through Si. There can be many factors (e.g.
currency regulations, service fee) that may influence a
client to choose a particular server, and we would

2

assume that the primary ones include geographical
proximity and fast server access.

Consider an activity A which can be an auction
for a particular item or an instance of an internet game.
If all participants of A are clients of just one server, say
S1, then it is as if S1 is acting as the centralised server,
except that there is an enhanced client fairness and
system responsiveness. Suppose that the participants of
A are distributed among the servers S1, S5 and S9. Now,
the state variables that define the progress of A must be
maintained consistently by these three servers. Thus, the
cost of our decentralised approach is influenced by the
impact of this communication between servers on the
overall service latency for client requests. The objective
of this paper are two fold. First, we assess the impact of
server communications in the latency for processing
client requests. Second, we assess the cost of replicating
a server. Towards these objectives, we have
implemented a two-server distributed auction system and
compared its performance with a centralised auction
system.

The paper is organized as follows. Next section
describes our distributed auction system. Section 3
describes its implementation, in which two servers are
used: one in Bolognia (Italy) and another in Newcastle
(England), connected by the Internet. Section 4 presents
results from experiments we carried out using the
distributed and centralised auction systems. The
centralised system has only the Newcastle server which
processes requests from both England and Italy. Section
5 concludes the paper.

2. A Distributed Architecture

2.1 Overview

For ease of exposition, we shall assume in the rest of the
paper that a client request received by a server is always
a valid one that needs to be processed. This enables us
to concentrate on a server’s core task of processing the
requests. We also assume that a client request accepted
by a server cannot be withdrawn. Further, we admit no
server or communication failures, which are discussed in
section 2.3. We regard the distributed system to be made
up of many servers connected to each other via the
Internet or a privately-owned, high-bandwidth network.
Each server serves a local set of clients as in figure 1(a).
A client will send their requests to its local server for
processing. Periodically, a server multicasts the requests
it has received so far to every other server in the system.
These multicast messages are called episode messages,
as their contents are used by each server to form the

history of client requests accepted (so far) in the global
system. The episode messages generated by a given
server obey the following rule: every local client request
accepted is referred to in one of the episode messages,
and no two episode messages refer to the same client
request. This is necessary to ensure that the global
history constructed by each server represents any given
client request exactly once.

Implementing a distributed auction system is a
challenging task, and requires, from systems and
networks point of view, the following problems to be
solved:

1. Message Exchange: Imagine the system being

comprised of tens of distributed servers.
Requiring each server to multicast its episode
messages periodically to the rest of the system,
is not a scaleable way to build the system, even
if one takes into account of the advances in IP-
multicast technology that uses programmable
(multicast-aware) routers. So, a sensible
structuring of the system is needed. For reasons
of scalability, such a structuring should not
particularly require a server to know, or
multicast messages to, all other servers in the
system.

2. System Shrinkage: Imagine that, in a particular
local server, there is no need to collaborate
with other servers to satisfy client requests; it is
better for that server to reduce its processing
load by leaving the global system, so that only
the interested servers communicate among
themselves. So, any technology we use to
implement the system must be capable of
supporting dynamically changing groups.

Addressing the second issue, completes the differences
between our approach and the interconnected severs
approach (described in [2]): the same objective is
realised starting from diametrically opposite points. We
start off with a default global environment, provide
support for shrinking server base if there is no demand.
In the other approach, environment starts off with the
local server and support is provided for server base to
expand when necessary.

2.2 System Structure

We structure the system of servers into a tree, rooted on
a single server. Fig. 1(b) shows eleven servers arranged
in a tree, with the root being server S11. Recall that
servers can directly communicate with each other as
shown in fig. 1(a) and this tree structure is a logical one

3

imposed in an attempt to make the inter-server
communication scaleable; also, that each server caters
for a local set of clients and has its own (local) clients
registered directly with it.

Adhering to the conventional terminology, the
root server is regarded to be at the top-most level of the
tree. A server is termed the parent of all those servers
that are directly connected to it and are one level below;
the lower level servers are termed the child servers of
the parent. (In the tree of figure 1(b), S9 is a parent for
S7 and S3, and is a child of S11.) A server (such as S1)
that has no child is called a leaf server. We do not
require the tree to be a balanced one (though such a tree
would improve the communication efficiency) nor a
binary one as shown in the figure. What we do require is
that the root server be connected to every other server
either directly or via a sequence of parent of servers, and
that every non-root server has only one parent.

Based on the tree structure, servers are
partitioned (not disjointly) into multicast groups: a
group consists of one parent and all its children. Within
a multicast group, servers know each other’s identifier
and periodically multicast the episode messages.
Referring to the tree in figure 1, the eleven servers will
be divided into five multicast groups: {S11, S9, S10}, {S9,
S7, S3}, {S7, S1, S2}, {S10, S8, S6}, and {S8, S4, S5}.
Every server is in at least one group and a parent server,
except the root, is present in two groups. For a parent
server (such as S7), the group that contains its children is
called its down-tree group and denoted as Gd; e.g., Gd of
S7 is {S7, S1, S2}. For a non-root server, the group that
contains its parent is called its up-tree group and is
denoted as Gu; e.g., Gu of S1 is {S7, S1, S2}.

client

S 11

S 10 S 9

S 7 S 3 S 8

S 1 S 4 S 5

Internet/Private
Network

S 11 S 10

S 9

S 8

S 1

S 7

S 5 S 4 S 6 S 3

S 2

client

S 6

S 2

Figure 1. (a) Distributed System of Servers. (b)
Logical Tree of Servers.

Partitioning the servers into multicast groups based on a
tree structure, facilitates dissemination of episode
messages in the following recursive manner. A non-root
parent server periodically aggregates its own episode
message with messages received from its children during
the past period, and multicasts the aggregated episode
message in its Gu. Thus, in its up-tree group, it

represents the bids received by every server of the sub-
tree rooted on itself. The downward propagation of
episode messages also work in the same way but in the
downward direction: a non-root parent server
periodically aggregates its own episode message with
the messages received from other members of its Gu
during the past period, and multicasts the aggregated
episode message in its Gd; the root server periodically
multicasts only its own episode message in its Gd. Recall
that the formation and aggregation of episode messages
are done in such a way that any given client request (sent
to any server in the global system) is represented exactly
once in the global history computed by every server.

Seeking tree-based structuring for reasons of
scalability is frequently done in the literature. For
example, the concept of IP-multicasting for a large
number of receivers, first presented in [20], assumes that
the IP-enabled routers are arranged in a tree (with the
router attached to the message sender forming the root).
Well-known scaleable transport protocols [21,22,23] use
this tree structure to guarantee end-to-end reliability
requirements. The analysis of [12] also favours that
servers in a large scale setting be arranged in a tree for
message efficiency. Assuming a tree structure, however,
requires addressing the task of the tree-formation.

Given that the root is fixed, any of the
appropriate tree forming algorithms readily found in IP-
multicast literature can be used to construct a tree, if one
is not already formed. We briefly focus on the policy
issues that define the scope of the ‘global’ system.
Though we assume that all servers are included, by
default, in tree formation, in practice, judgement would
be exercised in the selection of servers to form the
global system and hence the tree. This would depend on
the expected demand in the market base associated with
a particular server. We here note that selecting servers to
form the ‘global’ system is similar to the explicit
multicast model supported in [2]; also that we permit
any number of servers (resp. local markets) to be
included in the global system (resp. auction market).

2.3 Reliability Issues

2.3.1 Network Fault Model

The distributed system described above has two
subsystems: servers and the communication network that
interconnects them. A server can fail, usually in various
ways, and must be built reliably using internal
redundancy so that a service remains available. Using
well-known redundancy management techniques,
reliable servers can be built. When the network is not

4

owned or maintained by the service provider, this “must-
be(-built)-reliable” approach does not work for the
network, especially in the case of the Internet. So we
first establish the weakest failure model the network
must satisfy. The Internet generally provides a reliable
communication (in the sense that what is sent is
received, perhaps after a few retries) provided networks
do not partition. So, the network assumption needs to be:

1. NA1: provided that servers Si and Sj are
correct, a message sent by one to the other is
eventually delivered (asynchronous network).

Meeting this assumption requires that communication
path between any two servers, if broken, be eventually
restored. NA1 enables the server communication to be
reliable but not synchronous: a bound on how long
messages can take to reach the destination cannot be
known with certainty.

2.3.2 Handling Processor Faults

A processor can fail in many ways, and there are two
extreme fault models.

1. Byzantine Model: A faulty processor can fail in
arbitrary ways.

2. Crash Model: A faulty processor fails only by
stopping to function (crashing).

In what follows, we would assume the latter fault type,
since the abstraction of crash failures can be
implemented on top of a system of processor replicas
subject to Byzantine faults, by running appropriate
software protocols [13]. The following assumptions are
usually made in implementing such an abstraction.

1. NA2: The network (typically a LAN) that
interconnects processor replicas ensures that,
provided that two replicas are correct, a
message sent by one to the other is delivered
within some known bound (synchronous
network).

2. A1: when two correct process replicas perform
a given task with the same initial state, the final
states they reach and any outputs they produce
are identical.

A1 is essential for process replication and holds true;
NA2 permits less than one half of the replicas to be
faulty. (Without it, only less than a third can be faulty
[14]).

2.3.3 An Implementation Framework

We would adopt passive replication strategy to build
reliable servers as it would enable a replicated server Si
to provide fast responses in the absence of faults. Figure
5 shows the internal structure of Si. ISi is the interface
processor (front end) between n, n > 1, processor
replicas and Si’s clients, and it is assumed reliable1.
Further, NA2 is assumed to hold among ISi and the
processor replicas.

S i
1 S i

2 S i
n

IS i

...

To/From clients

To/from other servers From other servers

Figure 2. Internal Structure of Server Si.

In passive replication, only the highest ranked replica,
called the primary (Si

1 in figure 2), processes, and
responds to the requests; for every received request, it
multicasts to other replicas the state changes effected
and any response produced due to processing of the
request. If ever the primary crashes, the highest ranked
among the non-crashed replicas becomes the new
primary and continues with the processing of incoming
requests. The sever can provide services despite at most
(n-1) replica crashes.

An implementation of passive replication is
done using the following services within Si. A reliable
fifo multicast service (RMi) which ensures that if the
primary crashes during a multicast, either all functioning
replicas or none of them receives that multicast, and a
group membership service (GMi) which promptly
informs the functioning replicas of replica crashes and
the order in which these crashes must be viewed with
respect to message delivery order. (This property of
synchronising crash notifications with message delivery
order is known as view or virtual synchrony [3]). These
services facilitate prompt selection of new primary after
the existing one crashed, and guarantee that the
survivors are in agreement on the last multicast the old
primary made before it crashed so that the transfer of the

1 The router is assumed reliable (single point of failure) and uses a
mechanism (such as round robin DNS) to determine which
(functioning) server to direct an incoming message to.

5

processing role from the old to the new primary remains
correct. The specification and protocols for RMi can be
found in [15], and for GMi the specification in [3-9] and
protocols (that use NA2) in [16-18].

Note that with passive replication, while every
replica may receive the inputs, only the primary sends
the server output to ISi and to other servers. Next, we
describe how the (passively replicated) servers exchange
episode messages. For simplicity we will consider a
single multicast group G = {S7, S1, S2}(see figure 2), and
assume that each server Si, i = 1, 2, or 7, is internally
duplicated (n = 2) and Si

1 is the primary of Si. (With n
=2, at most one replica can crash within each Si.) G can
be configured to be G = {S7

1, S1
1, S2

1}, containing only
the server primaries. Note that the members of G
communicate with each other using an asynchronous
network where only NA1 (not NA2) holds. Suppose that
S7

1 crashes and an autonomous handling of this crash
involves S7

2 detecting the crash of S7
1 (through GM7

operating within S7) and joining G. S1
1 and S2

1 (the
surviving members of G) should not be entrusted with
failure detection, as accurate failure detection is
impossible over an aynchronous network [10]. Join
operations are usually costly and time-consuming; so,
we construct G containing not just the primaries but also
the secondaries.

The composition of G is shown in figure 3. We
assume a reliable fifo multicast service (RMG) and a
group membership service (GMG) within G. Using RMG,
(only) primaries would multicast episode messages
which are received by every member of G. Note that
RMG and GMG must be implemented with NA1 alone.
Many groupbased systems e.g. [3-9], can provide these
services just with NA1. However, they use failure
suspectors to handle crashes which must be switched off
and membership changes be effected by failure
notification multicast (in G) by a Si

2 when primary crash
is detected through GMi. Observe that Si

2 can reliably
detect the crash of Si

1 using the (local) GMi that is built
with assumption NA2. Further, (the view synchrony
property of) GMG will ensure that Si

2 is in agreement
with other members of G over the last episode message
that Si

1 had multicast in G before it crashed. Therefore,
no episode message of Si will be left unsent in G when
Si

2 promotes itself to the primary of Si.

Internet/Private
Network

S 7
1

S 1
1

S 7
2

S 1
2

S 2
1 S 2

2

S 7

S1

S 2

Figure 3. Replicated Processors S1, S2, and S7

forming a Group

2.3.4 Server Group Shrinkage

Suppose that S1 wishes to leave G due to lack of interest
in its local group. This leave request can be easily
handled by GMG by treating it as ‘announced crashes’ of
both S1

1 and S1
2. Suppose that S7 also wants to leave G

sometime after S1 had left. It cannot leave G until S2
joins its Gu = {S7, S3 S9} (see figure 2(a)); otherwise S2
will be left with no parent. As all the cited groupbased
systems support joining of new members in such a way
that the existing members view the joining identically
with respect to the messages they delivered in the old
and new configurations; hence, S2 joining {S7, S3 S9}
can be achieved in a manner consistent with the on-
going multicasts within {S7, S3 S9}.

3.Implementation of a Distributed Auction
System

3.1 Overview

The auction system is structured as a number of market
places that may be geographically separated over the
Internet. A single server and a number of clients
represent each market place; servers are structured
hierarchically (one root server and two child servers),
with clients placing bids and/or advertising items for
sale via their local server. Servers are passively
replicated, locally, to improve reliability within a single
market place. Two replicas are used for replication
purposes. Each server consists of four basic types of
component: auction, reliability, distribution, group
communication. Each component is implemented as a
CORBA object.

3.2 Auction Object

6

The auction object provides a number of services:

• Seller – Allows the registration of seller details
within the Bidding service. Contact details of a
seller to enable buyers to trade with sellers are
a minimum requirement and are managed by
the seller service.

• Buyer – Allows the registration of buyer details
within the auction service. As with the seller
service, the primary purpose of the buyer
service is to provide sellers with the relevant
details of a buyer to enable trading between
buyer and seller.

• Product – A product is made available to
buyers by sellers via the product service. All
the information required by buyers to enable an
auction of a product is supplied by the product
service (e.g., selling price, product description).

• Trader – Manages the bidding process. Buyers
may place bids and buyers/sellers may enquire
about the bidding status of products (if the
auction in use allows this). The trader service
also enforces the appropriate style of auction
(e.g., English, Dutch).

Figure 4 gives a logical description of how these
services collaborate to provide the bidding service.

Seller service

Trader service Buyer service

Product service

Buyer

Seller

Registration

Registration

Seller
New

products

Seller
authentication

Product details

Buyer Buyer

Accept
bids

Bidder
authentication

Bidder service

Seller

Seller

Bid
information

Figure 4. Logical view of auction object

services.

3.3 Reliability Object

Reliability object makes the server tolerant to a single
processor crash. Each auction object replica (two in our
system) is provided with a reliability object. A reliability
object provides two basic functions: accepts requests

from clients, implements passive replication policy.
Figure 5 describes the handling of a client request; M1 is
the initial client request. On receiving M1, R1 multicasts
this request (M2) to other reliability objects (two in the
diagram) and forwards M1 to its own auction object
(M3). On receiving M2, R2 forwards M2 (M4) to A2.
As this is a passive replication scheme, only replies from
A1 are returned to the client (via R1). Replies from A2
are ignored.

Auction
object

A1

Auction
object

A2

Reliability
object

R2

Reliability
object

R1

Client
request

M1

M2

M3

M4

Primary

Figure 5. Reliability objects in a market place

The reliability object may be co-located in the same
addressable space as an auction object or may be in a
different addressable space, possibly on another machine
in the network. In the latter case, the reliability object
and its associated auction object may fail independently
of each other. In this scenario, when an auction object
fails the reliability object instantiates a new auction
object, gaining state for the new replica from existing
replicas (via other reliability objects). When a reliability
object fails, another reliability object instantiates a new
reliability object and associate this new object with the
existing auction object. Furthermore, any client requests
that have arrived since failure must be forwarded to the
new reliability object, which in turn forwards them to its
auction object.

3.4 Distribution Object

Each auction object is assigned a distribution object.
The distribution object is responsible for imposing the
hierarchical structure of the global auction system and
managing the distribution of episode messages
throughout this structure.

When auction objects are replicated, the
distribution object is placed between clients and a
reliability object (see figure 6). The distribution object
accepts client requests (M1) and forwards them to its
local reliability object (M2). The system administrator
may determine the frequency a distribution object may
multicast episode messages (M3). Episode messages

7

received by a distribution object (apart from its own) are
disassembled into the original client request, each
request is forwarded to the local reliability object (as
M2).

Auction
object

A1

Auction
object

A2

Reliability
object

R2

Reliability
object

R1

Client
request

M1 Distribution
object

D1

Distribution
object

D2

Market place A

Market place B

Client
request

M2

M3

Figure 6. The role of distribution objects in the

market place.

The distribution object of the passive replica (D2) does
not receive any client requests nor does it send or
receive episode messages. When the primary replica
fails D2 assumes responsibilities of D1.

3.5 Group Communication Object

The group communication requirements of the reliability
and distribution objects are satisfied by the Newtop
service (a CORBA service) [24]. The Newtop service is
a distributed service and achieves distribution with the
aid of the Newtop Service Object (NSO). Each group
member (reliability object or distribution object) is
allocated an NSO. Group related communications
required by a member are handled by its NSO.

The Newtop service consists of three services
implemented by corresponding objects within the NSOs:
membership; invocation/multicast; and group
management. The management service provides
members with create, delete and leave group operations.
The invocation/multicast service provides three group
invocation operations (wait for responses from all, from
majority, from one and an asynchronous, no wait
invocation). The membership service maintains the
membership information and ensures that this
information is mutually consistent at each member. This
is achieved with the help of a failure suspector that
initiates membership agreement as soon as a member is
suspected to have failed.

4. Performance Evaluation

To demonstrate the effectiveness of our decentralized
approach, we present performance figures related to a

restricted implementation of the hierarchical
architecture; only a single server group is implemented,
releasing the need for a root node. We experiment with
centralized server and distributed two-server systems
(both replicated and non-replicated versions
considered). We measure the time it takes for a bid to be
registered at all auction objects in the system from the
moment a bid is sent by a client. These measurements
should not be treated as ‘absolute’ figures, but rather as
an aid to compare the effectiveness of our decentralized
architecture over a centralized architecture. For a fair
comparison, all experiments were conducted overnight
during which load fluctuations over the Internet were
small. Four different types of experiment were carried
out:

1. Centralised server non-replicated auction object
2. Distributed servers (two) non-replicated

auction objects
3. Centralised server and replicated auction

objects
4. Distributed servers (two) and replicated auction

objects

Clients were configured to issue bids as frequently as
possible; as soon as a reply is received another bid is
issued. Client numbers were increased gradually from
100 to 200 in increments of 10. At each of these
increments, registering 100 bids for each client in all
auction objects is timed, and the average is taken.

Communications between clients and servers
were enabled via the Internet. Pentium Linux machines
were used as hosts for clients and servers. Replicated
servers (when used) where located on different machines
on the same LAN. All objects of a single server were
compiled into the same addressable space (e.g., D1, R1,
A1 in figure 6). The implementation language used was
Java 1.1 and the ORB used was ORBacus 4.0b3 [19].
Clients and servers were located at Newcastle (England)
and Bologna (Italy). Clients were always equally
distributed between England and Italy. (That is, when
we say the number of clients is 100, it is 50 in England
and 50 in Italy.) In the single server cases, only
Newcastle server is operational which is accessed by
both Italian and English clients.

4.1 Centralised Server, Non-replicated Auction
Object

To enable comparative analysis of the performance
figures, the CORBA RPC time of a client in Italy
communicating with a server (without distribution or
reliability objects) in Newcastle was 94 ms (and
approximately the same for client in Newcastle and

8

server in Bologna), the equivalent CORBA RPC
between a single client and a local server (e.g.,
communicating over the same LAN) was approximately
6-7 ms for both Newcastle and Bologna.

Graph 1 - Registering a bid - Single non-replicated server
 (in Newcastle)

0

2000

4000

6000

8000

10000

12000

100 110 120 130 140 150 160 170 180 190 200

Number of clients

T
im

e
to

 r
eg

is
te

r
a

b
id

 (
m

s)

Newcastle client

Bologna client

Graph 2 - Throughput - SIngle non-replicated server (in
Newcastle)

0
20
40
60
80

100
120
140
160
180
200

100 110 120 130 140 150 160 170 180 190 200

Number of clients

T
h

ro
u

g
h

p
u

t
(b

id
s

p
er

 s
ec

o
n

d
)

The first observation to be made is the time for a bid
sent from a local client (Newcastle) to register in the
auction object is far lower than the time taken to register
a bid sent from a distant client (Bologna). This is
expected, as the latency between the server and the
distant clients is approximately 15 times larger than the
latency between the server and local clients. Both, local
and distant clients take longer to place bids when client
numbers are increasing (shown by the upward slope in
graph 1); doubling the number of clients doubles the
time taken for bids to be registered. This indicates that
the server may be overloaded, and this assumption
appears to be confirmed by the slightly decreasing slope
in graph 2 (throughput).

4.2 Distributed Servers, Non-replicated Auction
object

Graphs 3 and 4 present the measurements when two
servers are present, each serving local clients (Newcastle
& Bologna). The time taken to register a bid at both
servers is approximately 3 times slower than a client
registering a bid at its local server (comparing graph 3
with graph 1). However, in this scenario there are no
distant clients. Therefore, no client suffers the extremes
of poor performance witnessed when only a single server

is present (distant clients 15 times slower than local
clients) as shown in graph 1.

 Graph 3 - Registering a bid - Distributed servers

(Newcastle & Bologna)

0
200
400
600
800

1000
1200
1400
1600

100 110 120 130 140 150 160 170 180 190 200
Number of clients

Ti
m
e
to
re
gi
st
er
bi
d
(m
s)

Newcastle client
Bologna client

 Graph 4 - Throughput - Distributed non-replicated
servers (Newcastle & Bologna)

0
20
40
60
80

100
120
140
160

100 110 120 130 140 150 160 170 180 190 200
Number of clients

Th
ro
ug
hp
ut
(bi
ds
pe
r
se
co
nd
)

Another observation of interest is the degree of the slope
of graph 5 compared to that of graph 1. Graph 1 shows a
much steeper slope (for both Newcastle and Bologna
clients) compared to graph 3. When two servers are
present, increasing the number of clients does not have
the same adverse effect on time taken to register a bid as
when only a single server is present. In graph 6, the
slope is still increasing when client numbers are
increased, indicating that the server is not yet overloaded
(as is the case when only a single server exists – shown
in graph 2).

4.3 Replicated Auction Objects (Centralised
and Distributed Approaches)

Tables 1 and 2 present the measurements for all
experiments. These measurements indicate that the cost
of passive replication is low. Replacing a non-replicated
server with a passively replicated server increases the
time taken to register a bid by approximately 1 – 5% for
local clients and less than 1% for distant clients. This
can be explained by the manner in which messages are
processed by the primary. With reference to figure 5, the
multicast to the replica group (M2) of the original bid
(M1) is accomplished in parallel with the forwarding of
M1 to the auction object (M3). Thus, the overhead of
passive replication is the processing of M1 by the

9

reliability object and the time taken for M3 to be
received and processed by the auction object. As the
reliability and auction objects are compiled into the

same addressable space, the cost of sending M3 is very
low.

 Number of clients 100 110 120 130 140 150 160 170 180 190 200

Non-replicated Newcastle client 336 362 397 445 460 512 541 565 603 622 655

 Bologna client 4776 5261 5734 6225 6685 7173 7635 8126 8610 9073 9556

Replicated Newcastle client 341 377 413 443 471 504 566 581 619 664 689

 Bologna client 4778 5263 5740 6230 6693 7172 7666 8127 8626 9085 9593

Table 1. Performance of replicated and non-replicated auction objects for centralized approach

 Number of clients 100 110 120 130 140 150 160 170 180 190 200
Non-replicated Newcastle client 1006 1027 1088 1143 1144 1188 1208 1254 1266 1328 1349

 Bologna client 1015 1051 1061 1138 1146 1194 1211 1223 1285 1346 1336

Replicated Newcastle client 1027 1059 1102 1155 1168 1230 1219 1261 1314 1349 1365

 Bologna client 1049 1099 1121 1161 1209 1238 1250 1305 1340 1398 1427

Table 2. Performance of replicated and non-replicated auction objects for distributed approach

5. Conclusion

In this paper we have described a hierarchic
architecture to enable Internet-based applications to
satisfy the quality of service and reliability
requirements of a large number of geographically
dispersed clients. We have demonstrated the
effectiveness of our architecture by implementing, and
gaining performance measurements from, a distributed
auction system.
 The implementation framework addresses two
important issues: (i) building a reliable/available server
through process replication, and (ii) enabling a group
of such servers to communicate in a flexible manner
that allows a server to leave the system if its
participation in the group is no longer required. The
latter is achieved through the use of group management
techniques that are well established both in theory and
practice. By exploiting the fact that a server is
internally replicated over a synchronous network, we
circumvent the unsolvable problem [10] of accurate
failure detection in an asynchronous network (e.g. the
Internet), which the servers use to communicate with
each other.
 The performance measurements presented
here indicate that our solution achieves scalability, as
the total load is shared amongst many servers.
Furthermore, by presenting clients with geographically
local servers, the overall quality of service provided by
Internet-based applications to large numbers of
geographically dispersed clients is improved.

6. References
[1]www.time.com/time/daily/0,2960,34249,00.html.

[2] B Rachlevsky-Reich, I Ben-Shaul, N T Chan, A
Lo, and T Poggio, "GEM: A Global Electronic
Market System" Information Systems Vol. 24, No.
6, pp. 495-518, 1999.

[3] K. Birman , “The process group approach to
reliable computing”, CACM , 36, 12, pp. 37-53,
December 1993.

[4] Amir, Y., et al, “Transis: A Communication Sub-
system for High Availability”, Digest of Papers,
FTCS-22, Boston, July 1992, pp. 76-84.

[5] D. Dolev and D. Malki, “The Transis approach to
high availability cluster communication”, CACM,
39 (4), April 1996, pp. 64-70.

[6] P D Ezhilchelvan, R Macedo and S K Shrivastava,
“NewTop: a fault-tolerant group communication
protocol”, 15th IEEE Intl. Conf. on Distributed
Computing Systems, Vancouver, May 1995, pp.
296-306.

[7] L.E. Moser, P.M. Melliar-Smith et al, “Totem: a
Fault-tolerant multicast group communication
system”, CACM, 39 (4), April 1996, pp. 54-63.

[8] P. Felber, R. Guerraoui and A. Schiper, “The
implementation of a CORBA object group
service”, Theory and Practice of Object Systems,
4(2), 1998, pp. 93-105.

10

[9] M. Hayden, “The Ensemble system”, PhD thesis,
Dept. of Computer Science, Cornell University,
1998.

[10] M.J. Fischer, N.A. Lynch, and M.S. Paterson,
“Impossibility of Distributed Consensus with one
faulty Process," Journal of the ACM, Vol. 32, No.
2, pp. 374-382, April 1985.

[11] P. Klemperer, “Auction theory: a guide to the
literature”, Journal of Economic Surveys, 13(3),
July 1999, pp. 227-286.

[12] Andersson, A; Ygge, F. "Managing large scale
computational markets" 31st Hawaiian International
Conf on System Sciences, Vol VII, Software
Technology Track, pp 4-13, IEEE Computer
Society, 1998.

[13] S. K. Shrivastava, P. D. Ezhilchelvan, N. A.
Speirs, S. Tao, and A. Tully, “Principle Features of
the Voltan Family of Reliable System
Architectures for Distributed Systems,” IEEE
Transactions on Computers, Vol. 41(5), pp. 542-
549, May 1992.

[14] M Castro and B Liskov, “Practical Byzantine Fault
Tolerance”, Third ACM Symposium on Operating
Systems DEsign and Implementation (OSDI) Feb
99, pp. 173-186.

[15] V Hadzilacos and S Toueg, "Fault-Tolerant
Broadcasts and Related Problems", in Distributed
Systems, (Ed.) S Mullender, Addison-Wesley,
1993.

[16] H Kopetz, G Grunsteidl, and J Reisinger, “Fault
Tolerant Membership aervice in a Distributed
Real-Time System”, International Conference on
Dependable Computing for Critical Applications
(DCCA89), Santa Barbara, Aug 1989, pp. 167-174.

[17] P.D. Ezhilchelvan, and R. de Lemos, "A Robust
Group Membership Algorithm for Distributed
Real-time systems", Proceedings of the 11th Real-
Time Systems Symposium, Florida, December
1990, PP. 173-179.

[18] F. Cristian, "Reaching Agreement on Processor
Group Membership in Synchronous Distributed
systems", Distributed Computing, 4(5), pp. 175-
187, April 1991.

[19] http://www.orbacus.com/products/orbacus.html

[20] S Deering, “Multicast Routing in a Datagram
Internetwork”, Ph D Thesis, Stanford University,
1991.

[21] R. Yavatkar, J Griffoen, and M Sudan, ‘A Reliable
Dissemination for Interactive Collaborative
Applications’, ACM Multimedia, 1995.

[22] S Paul, K Sabnami, J Lin, and S Bhattacharya,
‘Reliable Multicast Transport Protocol (RMTP)’,
IEEE Journal on Selected Areas in
Communications, 15 (3), April 1997, pp. 407-21

[23] A M P Barcellos and P D Ezhilchelvan, “An End-
to-End Reliable Multicast Protocol using Polling
for Scaleability”, IEEE INFOCOM’98, San
Francisco, April 98, pp. 1180-87.

[24] G. Morgan, S.K. Shrivastava, P.D. Ezhilchelvan
and M.C. Little, “Design and Implementation of a
CORBA Fault-tolerant Object Group Service”,
Distributed Applications and Interoperable
Systems, Ed. Lea Kutvonen, Hartmut Konig,
Martti Tienari, Kluwer Academic Publishers,
1999, ISBN 0-7923-8527-6, pp. 361-374.

