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Abstract. We present a collision detection algorithm (Expanding Spheres) for 
interest management in networked games. The aim of all interest management 
schemes is to identify when objects that inhabit a virtual world should be inter-
acting and to enable such interaction via message passing while preventing ob-
jects that should not be interacting from exchanging messages. Preventing un-
necessary message exchange provides a more scalable solution for networked 
games. A collision detection algorithm is required by interest management 
schemes as object interaction is commonly determined by object location in the 
virtual world: the closer objects are to each other the more likely they are to in-
teract. The collision detection algorithm presented in this paper is designed spe-
cifically for interest management schemes and produces accurate results when 
determining object interactions. We present performance figures that indicate 
that our collision detection algorithm is scalable. 

1. Introduction 

Interest management has been used to satisfy the scalability requirements of com-
puter supported collaborative work (CSCW) [5] and military simulations [7]. These 
environments provide similar functionality to networked games by presenting geo-
graphically distributed users with access to a shared virtual world. Therefore, we 
assume that such techniques may be employed by networked games to promote scal-
ability by lowering the volume of message passing required to ensure players receive 
a mutually consistent view of the gaming environment. Ideally, interest management 
limits interactions between objects that inhabit the virtual world by only allowing 
objects to communicate their actions to other objects that fall within their influence. 
This is achieved via the spatial division of the virtual world with message dissemina-
tion among objects restricted by the boundaries associated with spatial division. Ob-
jects exchanging the same set of messages are associated to a group. To achieve mes-
sage dissemination in this manner a multicast service is commonly used to manage 
group membership (objects leaving/joining groups) and the sending of messages to 
group members. As the membership of such groups is achieved via consideration of 



the geographic location of objects in the virtual world, a collision detection algorithm 
is required to aid in identifying an object’s appropriate group membership.  

Collision detection has been well studied in the literature and a number of algo-
rithms have been proposed that perform better than O(n2) (e.g., [1] [2] [3] [4] [8]). 
Such algorithms commonly reduce the number of comparisons between objects via an 
ability to disregard many pairwise comparisons due to the large distances that may 
exist between objects. A number of these algorithms have been used to aid in deter-
mining appropriate object groups for interest management implementations [5] [6]. 

Collision detection algorithms are primarily designed to determine exact collisions 
between solid objects and are used to promote realism in virtual environments by 
making objects appear solid (e.g., objects should not pass through each other). How-
ever, in an interest management scheme it is common for the influence of an object to 
extend over the same virtual space that is occupied by other objects. Ideally, a colli-
sion detection algorithm suitable for interest management is required to identify the 
set of objects that may influence each other. This set provides the appropriate group-
ings for a multicast service. We believe that the development of a collision detection 
algorithm that performs better than O(n2) is required that is specifically designed for 
the purposes of interest management (i.e., identification of areas of the virtual world 
where area of influence of one or more objects coexist). Such an algorithm will pro-
vide the appropriate groupings of objects as expected by a multicast service and be 
able to more appropriately reflect the interest requirements of objects than existing 
collision detection algorithms. 

The rest of the paper is organized as follows. In section 2 we describe our algo-
rithm. In section 3 we discuss the performance of our algorithm and in section 4 we 
present our conclusions and future work. 

2. Algorithm 

We assume each object present in the virtual world to be a sphere. We consider these 
spheres to be auras associated with virtual world objects. An aura identifies an area of 
a virtual world over which an object may exert influence [5] [6]. All objects in the 
virtual world are members of the set VR. A collision between two objects, say Oa and 
Ob, is said to have occurred if Oa and Ob intersect (i.e., there exists an area of the 
virtual world that lies within the spheres of Oa and Ob). A collision relation (CR) 
identifies a set of objects that share, in part or fully, an area of the virtual world. 
Therefore, an object that belongs to a collision relation, say CRi, collides with every 
other object that belongs to CRi. Collision relations provide the appropriate groups 
that dictate the regionalization of the virtual world and provide a multicast service 
with appropriate group memberships. A set SU contains objects that are to be consid-
ered for collision; hence SU contains a subset of objects in the virtual world such that 
SU = {O1, O2, O3, …, On}. The determination of this subset is arbitrary, but will usu-
ally be equivalent to the full membership of VR at the start of the process of determin-
ing collisions. When an object, say Oa, from SU is being considered for collision it is 
said to be the object under consideration (OUC – when an object, say Oa, becomes 
the object under consideration we write Oa

OUC).  A set SC contains the collision rela-



tions between objects previously identified as the OUC. A collision relation is an 
element of set SC. For example, if SC = {{Oa, Ob, Oc,Od}, {Oa,Oe}, {Of, Og}, {Oh}} we 
may state that SC contains four collision relations that are made up from the objects 
Oa, Ob, Oc, Od, Oe, Of, Og and Oh. A 2D graphical representation of the collisions 
between these objects is shown in figure 1 (the scheme is applicable in 3D virtual 
worlds but we limit our diagrams to 2D for clarity).  
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Fig. 1. Collision relations. 

We now consider the identification of collision relations in more detail. We base our 
approach on determining if two spheres collide, say Oa and Ob, if the distance sepa-
rating Oa and Ob is less than the sum of the radii of Oa and Ob. We assume an object’s 
position vector and radius is known and may be described as Opos and Orad respec-
tively. Additionally, our method also requires a CR to maintain position vector and 
radius information (CRpos, CRrad). CRpos is taken from the first object identified in the 
CR and CRrad is initially taken from the first object identified in the CR when the CR 
is created (i.e., CR only has one object within it). CRrad is re-evaluated each time an 
object is added to a CR. Assume an object, say Ob, is to be added to a CR, say CRi, 
the value of CRi

rad is incremented using the following method: 
 

1. Let SD be the separating distance between Ox
pos and CRi

pos.  
2. If SD+Ox

rad is less than or equal to CRi
rad then CRi

rad remains unchanged. 
3. If SD+Ox

rad is greater than CRi
rad then let CRi

rad become SD+Ox
rad. 

 
Extending CRrad provides an opportunity to reduce the number of comparisons that 
need to be made in determining which objects intersect. We show how this can be 
possible by further considering the example shown in figure 2 when determining the 
collision relations of Of (Of is the OUC). Assume we have already deduced collision 
relations and calculated their associated CRrad values for the first five objects consid-
ered in alphabetical order giving CR1 = {Oa, Ob, Oc, Od} and CR2 = {Oa, Oe} (CR2 is 
actually the true radius of Oa). It is clear that Of does not intersect CR1 and CR2. 
Therefore Of cannot intersect with any of the objects that lie within CR1 and CR2. By 
comparing Of with CR1 and CR2 (two comparisons), we do not need to compare Of 
with any of the objects within CR1 and CR2 (five comparisons). The pseudo code 
describing our algorithm is presented in figure 2. 

 



Pseudo code main collision detection algorithm: 
Algorithm CollisionDetection 
Inputs  SU : Set of Objects;  
Returns SC : Set of CRs // CR – Collision Relation; 
Variables  Ox, Oi: Object; CL, CRy: CRs; newCRs: Set of CRs 
 
Begin 

 SC:= ∅;  

 for each Ox ∈ SU do 

  newCRs:= ∅; 

  for each CRy ∈ SC do 

   if (Ox collides with CRy) then  

    CL:= ∅; 

    /** Find colliding objects in CR **/ 
    for each Oi ∈ CRy do 

     if (Ox collides with Oi) then CL:=CL ∪ {Oi} fi 

    od 

    /** Remove CRy if complete collision, add later **/ 
    if (card CL = card CRy) then SC:=SC\{CRy} fi 

    if (CL ≠ ∅) then  

     /** Turn CL into a CR by adding Ox **/ 
     CL:=CL ∪ {Ox}; 

     /** Add to set of new CRs for Ox **/ 

     /** Check for sub/super sets in newCRs **/ 
     newCRs:= addCR(CL, newCRs); 

    fi 

   fi  

  od 

  /** Add new CRs for Ox to SC **/ 
  if (newCRs = ∅) then /* Add singleton CR */ 

   SC:= SC ∪ {{Ox}}; 

  else 

   SC:= SC ∪ newCRs; 

  fi 

 od 

 return SC; 

End  
Fig. 2. Pseudo code describing the collision detection algorithm. 

3. Performance Evaluation 

Experiments were carried out to determine the performance of the expanding sphere 
algorithm. To enable comparative analysis of the performance figures a brute force 
collision detection algorithm with appropriate post-processing to determine collision 
relations was implemented. The number of comparisons is a count of the number of 
sphere-sphere (pairwise) intersection tests required to determine appropriate object 
group membership for all objects between two consecutive frames of animation. This 
measurement may not be influenced by implementation details (e.g., hardware con-
figuration, memory management). 

Object numbers were increased gradually from 1000 to 4000 with the number of 
comparisons recorded at each increment. The experiments were repeated with 3 dif-
ferent levels of aura coverage via the resizing of the virtual world. Each level identi-
fies the percentage of the virtual world contained within auras given that no two auras 



overlap (low density (5%), medium density (10%), and high density (20%)). Experi-
ments were conducted on a Pentium III 700MHz PC with 512MB RAM running Red 
Hat Linux 7.2. 

4. Comparisons - Low Density
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6. Cmparisons - Medium Density
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2. Medium Density omparisons - High Density
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Fig. 3. Performance results. 

An attempt is made to provide realistic movement of objects within the virtual world. 
A number of targets are positioned within the virtual world that objects travel to-
wards. Each target has the ability to relocate during the execution of an experiment 
and objects may change their targets during the execution of an experiment Given 
that the number of targets is less than the number of objects and relocation and 
change direction events are timed appropriately, objects will cluster and disperse 
throughout the experiment. The auras of objects are uniform in size and their size 
does not change throughout the experiments. 

Performance results are presented in figure 3. The first observation to be made is 
that expanding sphere outperforms brute force in all density types. Graphs 1, 2 and 3 
show that expanding sphere carried out significantly less comparisons than brute 
force. This is particularly evident in medium and high densities. Furthermore, when 
object numbers increase to 4000 the number of comparisons performed by expanding 
sphere is approximately a sixth of the number of comparisons performed by brute 
force. This indicates that expanding sphere is scalable. 

The performance increase provided by expanding sphere over brute force is not as 
noticeable in low density worlds as it is in medium and high density worlds. This can 
be explained by the fact that a low density world would have fewer collision relations 
with lower memberships, an environment that requires expanding sphere to carry out 
more comparisons (if there exists no aura overlap then expanding sphere will perform 
the same as brute force). 



4. Conclusions and Future Work 

We have presented a collision detection algorithm tailored to the needs of interest 
management schemes that rely on the aura based approach for determining object 
interaction. As we use aura overlap for determining spatial subdivision, our algorithm 
more accurately reflects the groupings of objects that may be interacting than existing 
collision detection algorithms. This has the added advantage that the number of 
groups that a multicast service is required to support when providing message dis-
semination services for interest management schemes is kept to a minimum. This is in 
contrast to existing interest management schemes that do not tackle this scalability 
problem. We have provided performance figures that show our algorithm to perform 
better than O(n2) and maintains such performance when large numbers of objects are 
present, indicating that our algorithm is scalable. 

Future work will concentrate on further development of our algorithm. In particu-
lar, we want to apply our algorithm to our own interest management scheme [9].  
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