Lesson 6 - Introduction to GCM

Summary

This lesson will introduce GCM - The primary graphics library for creating 3D scenes on the Playsta-
tion 3. We start simple, by getting GCM to output a coloured triangle. Nvidia’s Cg shader language
will also be introduced, as it’s required for displaying any output in GCM.

New Concepts
GCM, Cg, Accessing the RSX graphics memory, loading shaders, vertices, buffer switching

Tutorial Overview

In this lesson we’re going to be performing the graphics equivelent of 'Hello World’ - outputting a
single coloured triangle. If you've ever used OpenGL, you’'ve probably done this before. As GCM
is a much lower-level library than OpenGL, it’s a bit trickier to get anything outputting on the
screen, even moreso as GCM requires you to use shaders before it’ll even display any output! We’ll
keep things ’simple’ this lesson, and not use any of the Playstation’s SPUs, so all you'll need is a
PPU program, set up in the usual way. We are also going to follow the same class hierarchy model
as the Graphics For Games module - with a GCMRenderer base class to encapsulate the generic
graphics programming functions (equivalent to the OGLRenderer class), and derived Renderer classes
to implement application-specific functionality. For this series of tutorials, you are provided with
enough code to get started with - the GCMRenderer class, and Playstation specific Mesh and Shader
class, with the tutorial text discussing differences with the OpenGL equivalent classes you are familiar
with.

GCM Overview

There are two rendering APIs available for use on the Playstation 3 - an OpenGL ES derived library
called psGL, and the Playstation specific GCM library. Sony recommend that you use GCM, which
is a low level API specifically designed around the hardware capabilities of the Playstation’s graphics
hardware, and so can more efficiently control the graphics output - psGL is itself built ’on top’ of
GCM anyway, so we may as well target the custom API. So, how does GCM compare with OpenGL?
Well, like OpenGL it uses matrices to perform vertex transformation, and uses vertices, textures,
and shaders to render objects to screen. Unlike OpenGL 1 and 2, it has no ’immediate mode’ -
you can’t just send vertices using a glVertex3f-like command, you must use vertex buffers for all
of your vertex rendering. There’s also no concept of a matrix stack in GCM, so there’s no pushing
and popping matrices. These two differences may not affect you too much if you have programmed
in OpenGL 3+ core profile, which removes the matrix statck and immediate mode rendering. The
biggest difference between GCM and OpenGL is that GCM expects you to do much more memory
management yourself. All it gives you is a pointer to the start of useable graphics memory - there’s no
"behind the scenes’ management of texture memory and vertex buffers. Also unlike OpenGL with its
choice of shader languages, in GCM you have only one - Cg. This is Nvidia’s own shader language,
and is syntactically fairly similar to GLSL - if you can use GLSL you should have no trouble with Cg.
Explaining all of the Cg concepts is beyond the scope of these tutorials, so if you want to learn all of
the ins and outs of Cg, you might like to take a look at the following website:

http://developer.nvidia.com/object/cg_tutorial_home.html


http://developer.nvidia.com/object/cg_tutorial_home.html

The website has a complete e-book introducing Cg, and contains plenty of example shaders to
produce some interesting graphical effects.

As with OpenGL, the commands you send to GCM via it’s API aren’t executed immediately, but
placed in a command buffer to be executed in sequence. As with most other things in GCM, we’ll
have to allocate the memory for this command buffer ourselves, on system memory rather than the
graphics memory.

GCM Memory

Earlier, it was mentioned that GCM does no memory management for you - all you get is a pointer
to the start of usable RSX memory. That means we're going to have to create some functions to
allocate graphics RAM for things like textures and shaders. GCM calls graphics RAM ’local memory’
- as it’s local to the RSX processor of the Playstation 3. Like a lot of other parts of the PS3, certain
GCM functions require structures to begin at a certain byte alignment, so we must provide functions
to allocate aligned memory, too. In addition, rather than memory pointers, some GCM functions use
a memory offset - how far from the start of graphics memory an address is. Luckily, GCM includes a
function to work out an RSX offset address for a pointer.

] System Memory

Memory Addr. Bl RSX Local Memory

GUM Offset

224 - 240 IR
240 - 255 [
256 - 271 [ERIII RN o0 - 15
272 - 240 IR 16 - 31

An example of a GCM offset (NB: Addresses are abstract examples)

GCM Surfaces

GCM has no default ’built-in’ automatic front and back buffer, so you must manually assign some local
memory to be the front, back, and depth buffers. In order to write graphical data to this memory,
they must be assigned to GCM surfaces. These surfaces are conceptually similar to Frame Buffer
Objects in OpenGL - each surface can have multiple colour buffers and a depth buffer attached to it,
just like an FBO. So, in the base GCMRenderer class, there are two GCM surfaces - one each for the
front and back buffers. Each frame the renderer will swap which of our two surfaces it is rendering
to, and display the other.

Compiling Cg Shaders

When we were making OpenGL shaders, we could simply provide text files containing out shaders to
the OpenGL API, which would compile them into code suitable for running on whatever our graphics
hardware is. This is a good idea when we don’t know what the underlying hardware of the device we
run our OpenGL applications on is, but in the case of the Playstation, we know it will always be the
RSX graphics processor. This means the time spent compiling the shaders at runtime is an unneces-
sary waste, as is even having the code to compile the shaders in memory! Instead, it is common to
compile the shaders into a binary at the same time the main program code is compiled, and instead
loading the raw binary data of the compiled shader program into memory at runtime.

We can make the compilation of the shaders we write automatic, using a Visual Studio feature called
the Custom Build Step. This allows us to define what happens to individual files when we compile a
project. To do this, we should add a shader’s source files to the Visual Studio solution - you might
want to make a VS filter to separate the shaders from your game code.



Once this is done, as well as allowing us to edit the shaders from within Visual Studio, we can also
then right click on a shader file, and select the properties option.
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This brings up the properties pane for the file. By selecting Custom Build Step from the Config-
uration Properties tab, we can define a command line program call, a text description that will be
outputted to the Visual Studio output window during compilation, and an Output file to let Visual
Studio know what files to expect out of the build process.
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So what program should we call from the command line to compile our shaders? In the SDK
installation, there’s a Cg compiler written specifically for the Playstation 3’s graphics hardware. We
can call this program with a couple of command line options to tell the compiler the shader profile to
use (either vertex or fragment), where to find the shader, and the name of the file to output.



For vertex shaders we should use the follow command line:

$(SCE_PS3_ROOT) /host-win32/Cg/bin/sce-cgc -profile sce_vp_rsx -o ”$(InputName).vpo”
”$(InputPath)”

Where sce-cgc -profile sce_vp_rsz defines that the shader we wish to compile is a vertex shader,
”$(InputName).vpo” (where vpo is short for vertex program object) defines the output, and ”$(Input-
Path)” is where the file can be found. The macros $(InputName) and $(InputPath) are made by Visual
Studio, and will match up to the filename, and file location, of the file we are editing the properties for.

Similarly, to define the command line for a fragment shader, we should use:

$(SCE_PS3_ROOT) /host-win32/Cg/bin/sce-cgc -profile sce_fp_rsx -o ”$(InputName).fpo”
7$(InputPath)”

Note the different profile name, and the slightly different filename.

The Cgc compiler outputs a raw binary, containing the program of our shader in a format that
can be loaded and ran directly on the RSX processor. This makes the Shader class for the Playstation
a bit different to the one introduced in the Graphics For Games module, as we will see shortly.

Simple GCM Rendering

To get you started with rendering using GCM you are provided with some basic classes, much as you
were during the graphics module. So, as well as the joypad input class you looked at in a previous
tutorial, we also have a Mesh class, Shader class, and GCMRenderer class, all tied together into a
simple example program that renders a single textured quad (we’ll leave discussing the specifics of
texturing until the next tutorial, though!). The Playstation SDK comes with the vector, quaternion,
and matrix classes you’ll need to do perform graphical rendering, so the framework for this tutorial
series doesn’t include any. The classes are very similar to what you are used to, and even include
functions for creating perspective and orthographic matrices, as well as inversion and transposition.

Program outline

Our simple GCM program is going to perform the following steps:

Step 1) Initialise GCM, and our display

Step 2) Load in our precompiled shaders

Step 3) Initialise our textured quad as a vertex buffer

Step 4) Render the scene until we press Start on the joypad
Step 5) Clean up and exit

As usual, there’s a bit more to it than first appears, but everything we need to do in each stage
will be explained in detail.

Linker Input Dependencies

As we’ll be using some external libraries in this lesson, in the form of GCM and Cg, we need to let
the compiler know where they are. Make sure you have all of the following libraries added in the
additional dependencies tab of the Visual Studio Configuration properties.

libcgc.a -lgcm_cmd -lgecm_sys_stub -lsysmodule_stub -lm -lsysutil_stub -lio_stub
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Mesh class

As part of the small code framework for this tutorial series, we have another version of the Mesh class,
which as you would expect, encapsulate the functionality required to render geometry using GCM.
It is very similar to the class you wrote in the Graphics For Games module, but there are some key
differences that should be examined in detail.

In OpenGL, we used a separate vertex buffer for each component in our vertices - one for posi-
tions, one for texture coordinates, one for colours, and so on for each vertex attribute. We can do so
in GCM too if we like, but we can gain a slight performance increase by instead using an interleaved
vertex buffer; that is, one that has all of the different vertex components together, in a single long
vertex buffer.

Position Buffer:[x[v]z]x]v]z]xls]zlx]v]z]...

Texture Buffer: [u[sulv[ulv]ulv]...

Interleaved: wlvlzlulvixlv]efulvix zlulv]..

Comparison between separate VBOs (top) and interleaved VBOs (bottom)

In order to deal with this interleaved data efficiently, rather than have separate arrays of vertex
data as member variables of the Mesh class, there is instead a single array of a Vertexr data structure
defined in the Mesh class header, which looks like this:

struct Vertex {
float x, y, z;
float u,v; //Tex Coords

//float nx, ny, nz; //Normals
uint32_t rgba;
I

Renderer.h

By initialising arrays of this struct, we get contiguous sections of memory, with the vertex compo-
nents sequentially interleaved - the position, colour and texture coordinate data of vertex n is packed
together before the data of vertex n+1.

In order to enable GCM to access this interleaved vertex buffer, we need to know the offset into
graphics memory to the start of each attribute of the interleaved array, and the buffer stride (how
much a pointer advance by to get to the same component of the next vertex - essentially the size of
the Vertez):

Vertex () Vertex | Vertex 2

lvlzlulvlxlvlzlulvix]vlzlulv]
T 'l--q--l-J---b
ot
I Tex Offset e
Position Offset

Vertex n# Tex Pointer = Tex Offset + (Stride * #)

Comparison between separate VBOs (top) and interleaved VBOs (bottom,)

By setting the size of a vertex, GCM can jump to the start of any vertices data during rendering,
and knowing the offset into that vertex of each component will allow it to send the correct attribute
data to the shader. We will come to setting the size of a vertex in the next function description, where
we actually draw some geometry, but to define the offsets, we can use the API function call cellGe-
mAddressToOffset, which calculates the offset into graphics memory of a pointer. So to calculate the
offset for the first position, and first texture coordinate of a Vertex, we can do this:
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cellGcmAddressToOffset (&m->vertexData->x,
&m->vertex0ffsets [VERTEX_POSITION]);

cellGecmAddressToOffset (&m->vertexData->u,
&¢m->vertex0ffsets [VERTEX_TEXCOORD]) ;

Vertex Data Offsets

The first parameter to cellGemAddressToOffset is the pointer to some data to calculate the mem-
ory offset of, and the second parameter is where to put the result - In OpenGL we stored the name
of each vertex buffer stream in an array, but in GCM we instead store offsets to each attribute in an
array (vertezOffsets), so that we only have to calculate them once. These offsets are best defined when
the mesh geometry is created, so there are examples of this offset creation in the GenerateTriangle
and GenerateQuad functions in the provided Mesh class.

When it comes to actually drawing some geometry, we must use another GCM function, cellGem-
SetVertexDataArray. This tells GCM about the structure of the Vertex data being used to render
geometry, and the size of each component in the vertex. For example, to set how the shader accesses
vertex data, we might do something like this once we have created some vertex data:

cellGcmSetVertexDataArray (
vertexShader.GetAttributeIndex (VERTEX_POSITION),
0,
sizeof (Vertex),
3:
CELL_GCM_VERTEX_F ,
CELL_GCM_LOCATION_LOCAL,
(uint32_t)vertexO0ffsets [VERTEX_POSITION]
ME

Mesh Class Code Snippet

The first parameter gets which vertex input location the data is pertaining to - in this case the
vertices position. Much like we use the MeshBuffer enum to tie shader vertex attributes and vertex
buffer objects together in the OpenGL Mesh class we wrote, In the GCM Mesh class we use the Ver-
texAttributes enum to bind vertex shader attributes and vertex offsets together. The third parameter
sets the stride of the data - how much to advance by each Vertex, which in this case is the result of
the sizeof operator on our Vertex struct. Our positions have 3 floats (lines 5 and 6) and in our simple
framework we’ll always be storing them in the playstation 3’s graphics memory for performance (line
6 - note how it is referred to as local memory).

GCM supports rendering via indices, and just like in OpenGL this is done using a slightly differ-
ent function call than non-indexed rendering. For example, here is the code in the Mesh class Draw
function to render the actual geometry:

if (vertex0Offsets [VERTEX_INDEX]) { //1f we have indices
cellGcmSetDrawIndexArray (type, numIndices,
CELL_GCM_DRAW_INDEX_ARRAY_TYPE_16,
CELL_GCM_LOCATION_LOCAL, vertexOffsets [VERTEX_INDEX]);
}s
elsed{
cellGcmSetDrawArrays (type, O, numVertices);

}

Mesh Class Draw Function Snippet

This should probably feel pretty familiar to you, as it is very similar to how we used OpenGL’s func-
tions. The non-indexed draw call, cellGemSetDrawArrays, takes identical parameters to its OpenGL
equivalent glDrawArrays - type defines the primitive type, and also takes in the number of actual
vertices to draw. There’s a few more parameters to the indexed drawing function compared to
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the OpenGL equivelent; instead of a sizeof to determine how large each index is, there are spe-
cific symbolic constants - CELL_GCM_DRAW_INDEX_ARRAY_TYPE_16 for unsigned shorts, and
CELL_.GCM_DRAW_INDEX_ARRAY_TYPE_32 for unsigned ints. As we have direct memory ac-
cess in GCM, we must also tell the function what type of memory it is in (system or local), and give
it either a pointer, or if it is in graphics memory (which it should be for performance reasons), an
offset.

Shader class

The Shader class for this tutorial series is a bit different to that introduced during Graphics For Games.
For one, this time a Shader represents a single Shader object - this means that we have a separate
Shader for each of the vertex and fragment shaders we use in our program, and so our GCMRenderer
class SetCurrentShader function takes two parameters. What’s more, we need a few vertex and
fragment shader specific functions, so as well as a Shader class, we have derived VertexShader and
FragmentShader classes, too.

LoadBinaryShader Function

As we are dealing with precompiled binary shaders, rather than ones loaded in from a text file, it
is worthwhile going over how this is achieved by the new Shader class. The shader binary is loaded
in via the LoadBinaryShader function, which takes in a simple string for a filename, and opens an
ifstream to read it - note that we must use the SYS_APP_HOME macro to ensure we load the file
from the correct place for the current program.

void Shader::LoadBinaryShader (std::string name) {
name = SYS_APP_HOME + name;

std::ifstream file(name.c_str(),std::ios::in|std::ios::binary);
if (' file) {//0h no!

std::cout << "Can’t find file: " << name << std::endl;
return;

Shader.cpp

Between lines 10 and 12, we work out how large the file we are loading is going to be, by seeking to
the end of the file (line 10), getting the current position of the read pointer (line 11), and then seeking
back to the beginning of the file (line 12). We can then use this data size to allocate some memory
to store the contents of the shader file (line 14), and then read it in (line 16), and close the file (line
17). On line 19, we cast the resulting data to the CGprogram type - this is a Cg specific pointer to
represent a shader program, and is pretty much analagous to the program name used in OpenGL. We
can then initialise the program ready to use by calling the GCM API function cellGemCglnitProgram.

file.seekg(0, std::ios::end);
unsigned int dataSize = file.tellg();
file.seekg (0, std::ios::beg);

char* data = (char*)malloc(dataSize);

file.read (data,dataSize);
file.close (); //Done with the data, close the file.

program = (CGprogram) (voidx*)data;

cellGcmCgInitProgram (program) ;

Shader.cpp
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To finish off, we need to get another pointer, this time into a specific location inside the shader binary
we have just loaded - the microcode starting point. Think of this as being the pointer to the first line
of the main function inside the shader. GCM has a function to calculate this pointer position, and
determine how large the code is, cellGemCgGetUCode, which we call on line 25. Using this informa-
tion, we can initialise some memory on the GPU-side of the Playstation’s memory. Vertex shaders
don’t need to be in GPU memory to work, but fragment shaders do, so we’ll keep things easy and
just always keep the shader microcode (the u is shorthand for the greek symbol mu, used to denote
micro) in GPU memory. Fragment shaders must also be 64 byte aligned in GPU memory, so again
we just always use this to be on the safe side.

unsigned int ucodeSize;
void *ucodePtr;
cellGcmCgGetUCode (program, &ucodePtr, &ucodeSize);
ucode = GCMRenderer::localMemoryAlign (64,ucodeSize);
memcpy (ucode, ucodePtr, ucodeSize);
cellGcmAddressToOffset (ucode, &offset);

}

Shader.cpp

Earlier it was mentioned that we must sometimes use offsets rather than pointers. It is the case
here, with the pointer to the microcode - we actually need the offset to the microcode for the fragment
shader, so we call the provided GCM function cellGemAddressToOffset to determine this value. It
takes in a pointer (the void* wucode in this case), and places the answer inside the second parameter,
a reference to an unsigned int. Once this is done, we have everything we need for GCM to use a
shader - a CGProgram parameter, a pointer to the microcode for vertex shaders, and an offset to the
microcode for fragment shaders.

As well as binding shaders, we must also occasionally set uniform data on them, to control what
their output will be. If you remember, the method for doing this in OpenGL was somewhat long
winded, requiring a call to glGetUniformLocation to find the location of a given named uniform, and
then one of a number of calls to uniform setting functions, such as glUniformMatriz4fv and glU-
niform1i. GCM does away with most of that, and along with a single uniform ’get’ function, has
only three uniform parameter setting functions - one for setting texture samplers (which we will look
at in the next lesson), and one each for vertex and fragment shaders. In GCM, sending incorrect
data with these functions is very dangerous, and will quite likely lead to the program crashing, so
we wrap these functions inside our own Shader class functions to try and prevent this from happening.

First off, lets take a look at the Shader class GetParameter function, analogous to the glGetUni-
formLocation function in OpenGL. In our Shader class, we actually keep a map, which maps strings
to a special CGparameter data structure, which is the identifer for a uniform datatype in a shader.
By storing the results of our GetParameter requests in a map, we can keep track of our parameters
in such a way that we don’t have to keep asking GCM where our uniforms are, which might be a
performance penalty. So, on line 31, we try to find a value in our map that equates to the incoming
parameter name (line 31), and if we find it, just return it (line 32-34).

CGparameter Shader::GetParameter(std::string name) {
std::map<std::string,CGparameter >::iterator i = uniforms.find(name)
if(i != uniforms.end()) { //if its in the map, return it!

return i->second;

}

Shader.cpp
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If we don’t find it, we instead use the GCM function cellGemCgGetNamedParameter, that looks
for a given parameter name in a given program, and returns a CGparameter data structure. If this
value is 0, then the parameter is not in the shader, and outputs a warning message. Either way, both
the parameter and its name are inserted into the map, so we can find it quicker later on.

CGparameter p = cellGcmCgGetNamedParameter (program, name.c_str());
if ('p) {
std::cout << "Can’t find named parameter:" << name << std::endl;
}
uniforms. insert (std::make_pair (name,p));
return p;
}

Shader.cpp

Using this function, we can now get the uniforms of our shaders, but we still need to be able to set
them! This is simply handled by a SetParameter function for the VertexShader and FragmentShader,
which looks like this for vertex shaders:

void Shader::SetParameter (std::string name, floatx*data) {
CGparameter p = GetParameter (name) ;
if (p) {
celchmSetVertexProgramParameter(p, data) ;
}
}

Shader.cpp

The function for Fragment shaders is slightly more involved, requiring the CGprogram and the
offset of the fragment shader:

void Shader::SetParameter(std::string name, floatx*data) {
CGparameter p = GetParameter (name) ;
if(p) {
ce11GcmSetFragmentProgramParameter(program, p, data, offset);
}
}

Shader.cpp

We simply use our GetParameter function to get the required CGparameter, and then use the
cellGemSetVertexProgramParameter (or cellGemSetFragmentProgramParameter) function to set the
uniform data to the data pointed to by the second input parameter. Note how we check that the
CGparameter actually exists before trying to set data to it - although attempting to set non-existing
uniforms is generally well handled in OpenGL, it will result in bad things happening inside GCM!
The internal workings of GCM will work out how large any given uniform datatype is, and only send
that many floats worth of data to the shader, and so only requires a single function, no matter what
the datatype.

There is unfortunately a special case when setting uniforms - matrices. While the inbuilt matrix
class of GCM is like the Matriz4 class we are used to using with OpenGL, in that it is column major
(the first 4 data elements define the first column of the matrix), Cg, the shading language we are
using, expects its shaders to be in row major order (the first 4 data elements define the first row
of the matrix). This is quite annoying, and we’d have to do lots of flipping around of matrices by
transposing them (which flips a matrix along its diagonal), which effectively turns rows into columns
and vice versa.
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So instead, we overload the SetParameter function, with an additional function that takes a Ma-
trix4 instead of a float pointer. It looks like this:

void Shader::SetParameter(std::string name, Matrix4 &totranpose) {
Matrix4 tempMatrix = transpose(totranpose);
SetParameter (name, (float*)&tempMatrix) ;

}

Shader.cpp

Not a lot to it! All it does is create a temporary matrix that equates to the transpose of the incoming
Matriz4, and then uses our other SetParameter function to set the actual data, by casting the tem-
porary matrix to a pointer to some floating point data - if you cast your mind back to the Graphics
For Games module, you will recall that you did the same case in OpenGL when sending matrices to
a shader, too.

The last function we have for setting uniform parameters is one specific to fragment shaders. If
a uniform datatype is changed on a fragment shader, then we must manually clear the instruction
cache of the fragment shader - or we run the risk of the shader continuing to use old data in its
calculations. While we could just clear the cache inside the SetParameter function, that might lead
to a performance hit - setting 10 uniforms will clear the cache 10 times, whereas if we keep it a sepa-
rate function, we can call it after we are done changing uniforms, and only have to clear the cache once.

void FragmentShader::UpdateShaderVariables () {
cellGcmSetUpdateFragmentProgramParameter (offset) ;

Shader.cpp

The last shader specific function to look at is the SetDefaultAttributes function of the vertex
shader. Just as with OpenGL, we need a way of tying our vertex buffer data to the input parameters
of our vertex shaders. The process is a bit more involved than with GLSL shaders in OpenGL, but
not by much. We get the parameters to our vertex input data in the same way as we do uniform data,
using cellGemCgGetNamedParameter. We could use the GetParameter function described earlier to
do this, but doing so would put the parameter result in the map, which should be unnecessary, as the
only time we will ever look for these parameters is in this function. So instead, on lines 28, 60 and 62,
we call the GCM function with the appropriate vertex input data name. Then, we must turn these
parameters into resources - essentially these represent where in the actual rendering hardware will a
particular parameter be bound to. We store the results of this in an array of such resources, just as
we do with the bufferObject array in the OpenGL Mesh class.

void VertexShader::SetDefaultAttributes () {

CGparameter position_param =
cellGcmCgGetNamedParameter (program, "position");
CGparameter colour_param =
cellGcmCgGetNamedParameter (program, "color");
attributes [VERTEX_POSITION] =
cellGecmCgGetParameterResource (program,position_param)- CG_ATTRO;
if (colour_param) |
attributes [VERTEX_COLOUR] =
cellGcmCgGetParameterResource (program, colour_param) - CG_ATTRO;
b
X
Shader.cpp

10




O 00 N O O d W N =

e e el e
g W N = O

o O W N

GCMRenderer Class

We now know how to manipulate vertex data, and how to load in and set uniforms on shaders - but
we still need a way of encapsulating GCM as a whole. That’s where the GCMRenderer class comes in.
Much like the OGLRenderer class you are used to, the GCMRenderer encapsulates the functionality
required to initiate graphics rendering on the Playstation, as well as how to handle graphics memory,
and keep track of the model, view and projection matrices.

Let’s take a look at the constructor for this class:

#define COMMAND_SIZE (65536) //64KB
#define BUFFER_SIZE (1024%1024) //1MB
GCMRenderer : : GCMRenderer (void) {
if (cellGcmInit (COMMAND_SIZE, BUFFER_SIZE,
memalign (1024%1024, BUFFER_SIZE))!= CELL_O0K) {
std::cout << "cellGcmInit failed!" << std::endl;
+
camera = NULL;
root = NULL;
InitDisplay ();
InitSurfaces ();
}

GCMRenderer.cpp

The GCM library itself is initialised with a single function call - cellGemliInit. It takes in 3 pa-
rameters - a default command buffer size, a total buffer size, and a pointer to the start of the total
buffer. The default command buffer and the total buffer must be at least 64KB and 1MB, respectively
- the values we assigned to the COMMAND _SIZE and BUFFER _SIZE macros earlier. To allocate the
memory for our command buffer, we use the memalign function - as well as being at least (and in
fact must be a multiple of) 1MB, the buffer must be 1-megabyte aligned, so we can’t just use malloc.
These buffers are used to store the list of commands to be sent to the RSX for processing - the GCM
functions called throughout the renderer will result in commands being pushed onto this command
list, which the RSX will pop off as it consumes and completes instructions.

The GCMRenderer is based on familiar design pattern - we have a Camera class to control the
view matrix, and a SceneNode hierarchy root to control what is being rendered. Although we have
now initialised GCM, we have not yet enabled any display output, or created any of the GCM surfaces
we need to render into - these are both created in the next two function calls.

Next up, we have InitDisplay - this will turn on the display output, and set the screen resolution,
too. The first thing this function does is attempt to set the output resolution, using the SetResolution
function. The resolution chosen will depend on the type of monitor or television the Playstation is
connected to, and the resolution set in the Playstation 3’s XMB user interface. It may even be the case
that a lower resolution than the 'native’ resolution is desirable, in cases where the fragment shader
is so costly to run it impacts the framerate - a lower resolution means less fragments are generated!
For this simple framework though, we’ll just try and enable the highest valid resolution we can -
the SetResolution function returns true if a given resolution selection has been enabled, or false
otherwise.

void GCMRenderer::InitDisplay () {
std::cout << "Initialising display!" << std::endl;

if (SetResolution (GCM_RESOLUTION_1080)) {

std::cout << "Using 1080p" << std::endl;
b

11




© 00 N

10

12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43

else if (SetResolution (GCM_RESOLUTION_720)) {
std::cout << "Using 720p" << std::emndl;

}

else if (SetResolution (GCM_RESOLUTION_576)) {
std::cout << "Using NTSC" << std::emndl;

}

else if (SetResolution (GCM_RESOLUTION_480)) {

std::cout << "Using PAL" << std::endl;

}

else {
std::cout << "No valid resolution available!" << std::endl;
return;

¥

GCMRenderer InitDisplay Function

Once the resolution has been set, we can use a couple of Playstation SDK functions to get the
current video output state (line 23, into the struct on line 20), and the current output resolution (line
24, using the previously defined struct to fill in a new resolution struct on line 21). From the result
of this, we can then get the correct screen width, height, and ratio (lines 27-29) to use for generating
our screen sized buffers.

CellVideoOutState vid_state;

CellVideoOutResolution resolution;

cellVideoOutGetState (CELL_VIDEO_OUT_PRIMARY, 0O, &vid_state);

cellVideoOutGetResolution(vid_state.displayMode.resolutionId,
&resolution) ; //Query the current state of the video resolution

screenWidth = resolution.width;

screenHeight
screenRatio

resolution.height;
(float)screenWidth / (float)screenHeight;

GCMRenderer InitDisplay Function

Then, we complete setting up the Playstation’s video settings (lines 31 - 37), and enable v-sync (line
38). V-sync links the maximum framerate to the refresh rate of the screen it is attached to - generally
this means we won'’t get more than 60 frames per second. Lastly, we use one final GCM inbuilt struct
and function, in order to determine where in memory the start of usable graphics memory is - we then
store the pointer inside a member variable of the GCMRenderer class, using the setLocalMem function.

//Configure the video output...

CellVideoOutConfiguration video_cfg;

memset (&video_cfg, 0, sizeof(CellVideoOutConfiguration));
video_cfg.resolutionld = vid_state.displayMode.resolutionId;
video_cfg.format = CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_X8R8G8BS;
video_cfg.pitch = screenWidthx*4;

cellVideoOutConfigure (CELL_VIDEO_OUT_PRIMARY ,&video_cfg, NULL, 0);
cellGcmSetFlipMode (CELL_GCM_DISPLAY_VSYNC) ;

CellGcmConfig config;
cellGcmGetConfiguration (&config) ;
setLocalMem ((uint32_t)config.localAddress) ;

GCMRenderer InitDisplay Function
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The SetResolution function called in InitDisplay is pretty simple. It takes in an enumerated value
that equates to a list of supported resolutions, and then queries the hardware as to the suitablility of
this resolution for the current connected display device (line 48), and if so, gets the resolution settings
(such as width etc) and stores them in a struct (on line 53). Using the resolution and its information,
a CellVideoOutConfiguration struct is filled - this is used to then configure the actual video hardware
to the requested resolution (line 65). Hopefully, we’ll then be able to return true, otherwise false will
be returned - that’s why we have the else-if block in the previous function.

bool GCMRenderer::SetResolution(GCMResolution resolution) {

//First, query if resolution is viable

CellVideoOutResolution reslInfo;

if (! cellVideoOutGetResolutionAvailability (CELL_VIDEO_OUT_PRIMARY,

resolution, CELL_VIDEO_OUT_ASPECT_AUTO,0)) {
return false;

is

if(cellVideoOutGetResolution( resolution, &resInfo ) != 0) {
return false;

}

CellVideoOutConfiguration config = { resolution,
CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_X8R8G8BS8,
CELL_VIDEO_OUT_ASPECT_AUTO,

{0,0,0,0,0,0,0,0,0},
cellGecmGetTiledPitchSize ( resInfo.width * 4 )
};
if (cellVideoOutConfigure( CELL_VIDEO_OUT_PRIMARY, &config,
NULL, 0 ) !'= 0) {
return false;
}
return true;
}

GCMRenderer InitDisplay Function

In the InitDisplay function, we also saw the first mention of local memory - memory directly
attached to the RSX processor. As mentioned earlier, when we initialise GCM, we get a pointer to
the start of available graphics memory, and from then on must handle memory allocation ourselves.
There are three functions in GCMRenderer that deal with this memory allocation - one to set the
start of graphics memory, one to allocate a block of memory, and one to allocate an aligned block
of memory. Lets take a look at each of these functions in turn, starting with the simplest, setLocalMem.

void GCMRenderer::setlLocalMem(uint32_t to) {
localHeapStart = to;
}

GCOCMRenderer setLocalMem Function

Not much to it - all it does is set a member variable to the input parameter. Next up is localMemo-
ryAlloc, which performs a similar function as malloc or new, for RSX memory:

void* GCMRenderer::localMemoryAlloc (const uint32_t size) {
uint32_t currentHeap = localHeapStart;
localHeapStart += (size + 1023) & (71023);
return (void*) currentHeap;

3

GCMRenderer localMemoryAlloc Function
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What is this function doing? Well, you should be able to see that we are storing the existing pointer
into graphics memory in the variable currentHeap, and then incrementing the pointer by a value based
on the input variable size, and then returning the local variable. It might be easier to think of it in
this way - if we imagine we have a notebook of numbered pages, and we want to reserve some pages
to write something in later, we could just skip ahead that many pages, and write our next note there
instead. In this example, the current page number we’ll be writing to next is the current pointer
position into graphics memory, and the size variable is how many pages to reserve for something else.

That’s all well and good, but what on earth is this line actually doing?

localHeapStart += (size + 1023) & (71023);

GCMRenderer localMemoryAlloc Code Snippet

It is actually making sure that size is a multiple of 1024 bytes, to aid in data alignment. To see
how it does this, let’s go through a simple example. Let’s assume our size is 10, and we want to make
sure it is a multiple of 16, rather than 1024 (just to make the values smaller). We are going to subtract
1 from size, and then do a bitwise AND with the inverted size-1 value (you may remember the tilde
bitwise operation from the stencil buffering tutoriall).

Variable Binary Decimal
size 00001010 10
align 00010000 16
align-1 00001111 15
“align-1 11110000 a
size+(align-1) 00011001 25 b
a&b 00010000 16

GCMRenderer localMemoryAlloc byte alignment

Pretty neat! The combination of the bitwise inversion and bitwise AND on the value align-1 will
bump our answer up to the next multiple of the alignment! The last function does pretty much the
same thing, but with the alignment determined by a function parameter:

void* GCMRenderer::localMemoryAlign (
const uint32_t alignment,
const uint32_t size) {
localHeapStart = (localHeapStart + alignment-1) & (~(alignment-1));
return (void*)localMemoryAlloc(size);
}

GCMRenderer localMemoryAlign Function

Ideally we would have a more complicated memory management system than this; afterall, what
will happen if we try to allocate more than 256mb of RAM during a program execution? We have no
way of ’deleting’ memory, and so the program will fail. For simple applications this method will serve
us well, though.

We have one more function call in our constructor, InitSurfaces. Remember, all rendering in GCM is
done to a surface - the GCM equivalent to an OpenGL Frame Buffer Object. The GCMRenderer class
has two ”built in” surfaces, that we are going to use as the front and back buffer during rendering.
Each surface will have its own colour buffer (as we will be rendering into one while drawing the other),
but will share a single depth buffer. GCM surfaces also support multiple colour attachments - up to
a total of four. You may use them in your own applications, but for our front and back buffers they
are not necessary, and so we are going to disable them. Here’s the start of the InitSurfaces function:
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void GCMRenderer::InitSurfaces () {
depthPitch = screenWidthx*4;
uint32_t depthSize depthPitch*screenHeight ;
void* depthBuffer localMemoryAlign (64, depthSize);
cellGcmAddressToOffset (depthBuffer , &depthOffset);

GCMRenderer InitSurfaces Function

First up we are going to initialise some memory to use as our depth (and as you will see shortly,
also our stencil) buffer. We got a value for the local variable screen Width in the InitDisplay function,
and using it we can calculate the pitch of our depth buffer (32BPP * screen Width), and the total
number of bytes we will require for it (pitch * screenHeight). Then we can use our new localMemo-
ryAlign function to allocate some graphics memory (the memory we use for screen buffers must be at
a 64-byte alignment), and then calculate the offset of this new memory (line 5).

Next, we must do the same for the two colour buffers , and set some values in our two surfaces -
it has variables to determine where the memory is (on line 17, where we set it to local), and the offset
(line 12, as the second parameter). Note that the location and offset variables are actually arrays
- this is for multiple colour attachments, and since we only want one colour attachment for these
buffers, we must have an additional loop to disable multirendering (lines 19 - 24, with the offset and
pitch signifying to GCM that these attachments are disabled). The only other interesting function
here is cellGemSetDisplayBuffer, which registers our surface memory as an output buffer - every time
we swap buffers, GCM will move to the next registered display buffer.

uint32_t colourPitch = screenWidthx*4;
uint32_t colourSize = colourPitch*screenHeight ;
for(int i = 0; i < 2; ++i) {

void*buffer = localMemoryAlign (64, colourSize);

cellGcmAddressToOffset (buffer, &surfaces[i].colorOffset [0]);

cellGcmSetDisplayBuffer (i, surfaces[i].colorOffset [0],
colourPitch, screenWidth, screenHeight) ;

surfaces[i].colorLocation [0]
surfaces[i].colorPitch [0]
surfaces[i].colorTarget

CELL_GCM_LOCATION_LOCAL;
colourPitch;
CELL_GCM_SURFACE_TARGET_O;

for(int j = 1; j < 4; ++j) {

surfaces[i].colorLocation[j] = CELL_GCM_LOCATION_LOCAL;
surfaces[i].colorOffset [j] = 0;
surfaces [i].colorPitch[j] = 64;

GCMRenderer InitSurfaces Function

Finally, we set some more surface parameters, including the width and height of the surface, and its
depth information - note that on line 30 we use the symbolic constant CELL_GCM_SURFACE_Z24S8,
which tells GCM to use 24 bits of our depth buffer for depth information, and the remaining 8 bits
for stenciling.

surfaces[i]. type = CELL_GCM_SURFACE_PITCH;
surfaces[i].antialias = CELL_GCM_SURFACE_CENTER_1;
surfaces[i].colorFormat = CELL_GCM_SURFACE_A8R8G3B3;
surfaces [i].depthFormat = CELL_GCM_SURFACE_Z24S8;
surfaces [i].depthLocation = CELL_GCM_LOCATION_LOCAL;
surfaces [i] .depthOffset = depthOffset;

surfaces[i] .depthPitch = depthPitch;
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surfaces[i] .width = screenWidth;
surfaces[i] . height = screenHeight;
surfaces[i] . x = 0;
surfaces[i].y = 0;
}
cellGecmSetSurface (&surfaces [0]) ;
+

GCMRenderer InitSurfaces Function

That’s the setup of GCM done! But there are a few more functions that must be defined. In
OpenGL, at the start of every frame it is usual to clear the buffer being drawn into, and at the end
of the frame to swap the buffers. We do exactly the same in GCM, but they require a bit more work,
and so are put into their own GCMRenderer functions. Here’s ClearBuffer:

void GCMRenderer::ClearBuffer () {
cellGecmSetColorMask (CELL_GCM_COLOR_MASK_R|CELL_GCM_COLOR_MASK_G |
CELL_GCM_COLOR_MASK_B|CELL_GCM_COLOR_MASK_A);
cellGecmSetClearColor ((64<<0) | (64<<8)|(64<<16)]|(255<<24));
cellGcmSetClearSurface (
CELL_GCM_CLEAR_Z|CELL_GCM_CLEAR_S|CELL_GCM_CLEAR_R|
CELL_GCM_CLEAR_G|CELL_GCM_CLEAR_B|CELL_GCM_CLEAR_A);
}

GCMRenderer ClearBuffer Function

We can think of this as our ’frame reset’ function, so we enable writes into all of the colour channels
using cellGemSetColorMask, which behaves the same as the colour mask function in OpenGL. We can
then set a clear colour, which rather than the OpenGL way of having 4 floats to determine the colour,
has a single 32 bit ARGB value, so we need to do some bitshifting, eventually making the clear colour
grey. Next is the actual surface clearing function, which again takes a set of values ORd together - note
that we also clear the stencil (CELL_.GCM_CLEAR_S) and depth buffer (CELL_.GCM_CLEAR_Z) in
this function, too.

Our SwapBuffers does much the same as OpenGL’s own SwapBuffers function - it swaps around
the buffers so that the buffer just rendered to is now displayed on screen, so that the previously
displayed buffer can be drawn into instead. Just to be careful, we are first going to use the function
cellGemGetFlipStatus and wait if it does not return 0 - a non-zero value indicates that the hardware
is currently in the process of performing a previously requested flip. Once this is done, we reset the
flip status (6), flip the buffers (line 8), and then tell GCM to flush the pipeline - that is, to execute
everything in its command buffer before moving on. On line 12, we invert a class member boolean
variable swap Value, and then use it to inform GCM which of the two surfaces in our member variable
array to render into next.

void GCMRenderer::SwapBuffers () {

while (cellGcmGetFlipStatus ()!=0){
sys_timer_usleep (300);

}

cellGcmResetFlipStatus ();

cellGecmSetFlip ((uint8_t)swapValue);

cellGemFlush () ;

cellGcmSetWaitFlip () ;

swapValue = !swapValue;
cellGcmSetSurface (&surfaces [swapValuel);

GCMRenderer SwapBuffers Function
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Sometimes during graphical rendering, we might want to set the viewport transformation - that is, the
transform that transforms a vertex from Normalised Device Coordinates (-1.0 to 1.0 on each axis) to
screen coordinates (0 to screen width and height, plus min and max z values). You might recall that we
changed the viewport during shadow mapping tutorial so that the viewport matched the dimensions
of the shadow scene depth buffer. Rather than glViewport, which took a size and a translation, GCM
has cellGemSetViewport, which takes a few extra parameters. Again, setting the viewport has been
wrapped up inside a GCMRenderer class function for you, SetViewport, which by default sets the
viewport to fill the screen, but could easily be extended to take in parameters for situations such as
shadow map rendering.

void GCMRenderer::SetViewport () {
uintl6_t x,y,w,h;

float min, max;
float scale[4] ,offset [4];
x = 0; //starting position of the viewport (left of screen)
y = 0; //starting position of the viewport (top of screen)
w = screenWidth; //Width of viewport
h = screenHeight; //Height of viewport
min = 0.0f; //Minimum z value
max = 1.0f; //Maximum z value
//Scale our NDC coordinates to the size of the screen
scale[0] = w * 0.5f;
scale[1] = h * -0.5f; //Flip y axis!
scale[2] = (max - min) * 0.5f;
scale[3] = 0.0f;
//Translate from a range starting from -1 to a range starting at O
offset [0] = x + scale[0];
offset[1] = y + h * 0.5f;
offset[2] = (max + min) * 0.5f;
offset [3] = 0.0f;
//analogous to the glViewport function...but with extra values!
cellGcmSetViewport(x, y, w, h, min, max, scale, offset);
}

GCMRenderer InitSurfaces Function

The vectors scale and offset can be thought of as combining to form a matrix that will scale up
NDC space to the screen dimensions, and then translating the coordinates so that the origin is at the
bottom left, rather than the centre of the screen.

The final GCMRenderer function we’re going to look at is the SetCurrentShader function. This
time, it takes two parameters - one vertex shader, and one fragment shader, but is otherwise the
same as the OGLRenderer equivelent. Note that the vertex shader function requires a pointer to the
microcode, while the fragment program function requires the offset.

void GCMRenderer::SetCurrentShader (VertexShader & vert,
FragmentShader &frag) {
currentFrag = &frag;
currentVert = &vert;
cellGcmSetFragmentProgram (currentFrag->program, currentFrag->offset)
cellGcmSetVertexProgram (currentVert ->program, currentVert ->ucode) ;
X

GCMRenderer SetCurrentShader Function
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Renderer Class

That’s the basic base class finished with! Although the API functions were different, and we had to do
a bit more work, it wasn’t really that different than what you were used to. Just like the OGLRenderer
base class, the GCMRenderer is missing a RenderScene function. Such a function might look like this:

void Renderer::RenderScene () {
SetViewport () ;
ClearBuffer ();
this->SetCurrentShader (xcurrentVert ,*currentFrag);
cellGcmSetDepthTestEnable (CELL_GCM_TRUE) ;
cellGcmSetDepthFunc (CELL_GCM_LESS) ;
modelMatrix = Matrix4::identity ();
if (camera) {
viewMatrix = camera->BuildViewMatrix();
+
elsed{
viewMatrix = Matrix4::identity ();
}
projMatrix =
Matrix4::perspective (0.7853982, screenRatio, 1.0f, 20000.0f);
currentVert->UpdateShaderMatrices (modelMatrix,
viewMatrix ,projMatrix);
if (root) {
DrawNode (root) ;
}
SwapBuffers () ;
+

GCMRenderer SetCurrentShader Function

Looks familiar, doesn’t it? Although we’re using a different rendering API, and different classes to
support it, the end result is a renderer that works pretty much as we are used to. We can reset matrices
to identity, and also generate perspective matrices (note, rather than degrees, Sony’s perspective
matrix function uses radians), send them to the vertex shader, and render our scene graph.

Cg Shaders

As described earlier, we don’t use GLSL shaders when programming on the Playstation, we use
Nvidia’s Cg language. Don’t get too worried though, they both use a C-style syntax, and do much
the same thing, and use the same programmable model of vertex and fragment shaders. with a few
minor differences. These are mostly around specific syntax, and datatypes, so let’s look at an example
vertex shader to see what some of these are.

On line 1, we can see a struct called output - we’ll see very shortly how it is used, and how similar
it is to the out concept in GLSL. Note that it contains two instances of a datatype float4 - this is
what Cg calls a 4-component vector. Also, each component has what is known as a binding semantic
after it, which provides a hint to the Cg compiler what each variable is to be used for, which may help
in making optimisations. On line 7, we begin our main function, and straight away we can see that
rather than being a void type, it will return an instance of our newly described struct!. The main
function also has 6 input parameters - our vertex attributes (complete with binding semantics), and
three uniforms of type floatdx4 - Cg’s 4 by 4 matrix datatype. If we look back at the GCMRen-
derer SetDefaultAttributes function, we’ll see that the strings we used there match up to the input
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attributes here, as do the matrices with the strings in UpdateShaderMatrices. In the main function
itself, we can see that we have to declare an instance of our output struct (line 18), and at the end of
our function return it (line 27). Otherwise, the function should make sense - we form an MVP matrix
from the input matrices, and transform the input position by it, and additionally pass our other input
parameters to the output struct. Note that rather than the easier multiplication operator (*), we use
a multiplication function instead (mul) - the operator alternative will compile, but does not seem to
provide correct answers.

struct output {
float4 position : POSITION;
float4 color : COLOR;
float2 texCoord : TEXCOORDO;
s
output main
(
float4 position : POSITION,
float4 color : COLOR,
float2 texCoord : TEXCOORDO ,
uniform float4x4 modelMat,
uniform float4x4 viewMat,
uniform float4x4 projMat
)
{
output OUT; //We must declare our output struct
float4x4 mvp = mul (projMat, mul(viewMat, modelMat));
//mvp = projMat * viewMat * modelMat; //This compiles! But don’t...
OUT . position = mul (mvp, position);
0UT.color = color;
0UT . texCoord = texCoord;
return 0OUT; //and output it via return
}

vertex.cg

That’s the vertex shader done with - now let’s take a look at the fragment shader, which is very
similar to GLSL fragment shaders. It takes in two parameters (linked to our vertex shader’s output by
a combination of their name and binding semantic), a uniform texture sampler, and finally an output
float4 with a COLOR binding semantic - this is functionally identical to the output from our GLSL
fragment shaders. The samplerRECT and texTECT functions are used to sample from square, power
of 2 textures - we could use sampler2D and tex2D for non-square textures.

void main
(
float4 color_in : COLOR,
float2 texcoord : TEXCOORDO,
uniform samplerRECT texture,
out float4 color_out : COLOR
)
{
color_out = color_in * texRECT (texture, texcoord);
}

fragment.cg
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Tutorial Summary

If everything has gone to plan, you’ll have a grey screen with a multicoloured triangle in the middle
of it! It seems like a lot of code to do something so simple - but like the SPU tutorial, you’ve learned
a lot on the way, and have created a good starting point for some simple graphical rendering. You
now know how to load things into the RSX processor’s local memory, how to render things, how to
load and use shaders, and how to swap the buffers (as well as create them!). Next lesson we’ll take
things a bit further, and add texture mapping to our simple renderer.

Further Work

1) Try to build a simple scene-graph based graphical scene - maybe the cube robot! Try including
some shader functionality controlled by a uniform, such as an overall node colour, or a selectable
blending between two texture samplers.

2) Try converting the realtime lighting functionality outlined in the graphics module to Cg and GCM
- you'll need to add normals to the Vertexr struct, and create some way of sending light information
to to the fragment shader. Cg contains all of the vector maths required to perform this, just remember
you are dealing with float3 and float4, rather than vec3 and vec4.

3) Writing to the stencil buffer can be enabled using cellGemSetStencilTestEnable, cellGemSetSten-
cilFunc, and cellGemSetStencilOp. Try implementing the stencil buffering tutorial
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