
Bitwise Operators

Introduction
This workshop presents a refresher course in bitwise operations, and how they are implemented in C

and C++. Bitwise operations perform fast primitive actions on binary numerals at the level of their

individual bits. The operators either combine two numbers using binary logic, or they shift the bits of

the binary number to the left or right.

Binary Operators
Computers use binary representation, and combination, to operate. Each piece of data is

represented as a set of binary values, or bits. Each bit has two possible states:

 1 or TRUE

 0 or FALSE

There are a number of types of binary operator which allow manipulation of data at this bitwise

level. This section describes each operator.

Note that, as with the arithmetic operators, these are overloadable in C++.

AND “&”
The bitwise AND operator, combines two inputs by comparing their respective bit values, setting the

resultant bit to TRUE if both inputs are TRUE, and setting it to FALSE in all other cases. Simply put,

the output is TRUE if input1 is TRUE AND input2 is TRUE.

Input1 Input2 Output

0 0 0

1 0 0

0 1 0

1 1 1

In C and C++, the symbol & is used to represent a binary AND.

Consider a case where a = 15 (i.e. binary 1111) and b = 4 (i.e. binary 0100). If c = a & b, then c is

equal to 4 (i.e. binary 0100). Each bit of the two inputs has been compared – the only bit which is

TRUE in both inputs is the third one, so that bit is set to TRUE in the output and the other three bits

are set to FALSE.

OR “|”
The bitwise OR operator, combines two inputs by comparing their respective bit values, setting the

resultant bit to TRUE if either input is TRUE, and setting it to FALSE if both inputs are FALSE. Simply

put, the output is TRUE if input1 is TRUE OR input2 is TRUE.

Input1 Input2 Output

0 0 0

1 0 1

0 1 1

1 1 1

In C and C++, the symbol | is used to represent a binary OR.

Consider a case where a = 15 (i.e. binary 1111) and b = 4 (i.e. binary 0100). If c = a | b, then c is equal

to 15 (i.e. binary 1111). Each bit of the two inputs has been compared – every bit is TRUE in at least

one input, so all bits of the output are set to TRUE.

XOR “^”
The bitwise XOR operator (the exclusive OR), combines two inputs by comparing their respective bit

values, setting the resultant bit to TRUE if either one or the other input is TRUE, and setting it to

FALSE if both inputs are FALSE or both inputs are TRUE. Simply put, the output is TRUE if only one of

input1 and input2 is TRUE.

Input1 Input2 Output

0 0 0

1 0 1

0 1 1

1 1 0

In C and C++, the symbol ^ is used to represent a binary XOR.

Consider a case where a = 15 (i.e. binary 1111) and b = 4 (i.e. binary 0100). If c = a ^ b, then c is equal

to 11 (i.e. binary 1011). Each bit of the two inputs has been compared – the third bit is TRUE for both

inputs, so it is set to FALSE in the output.

NOT “~”
The bitwise NOT operator takes a single input and inverts each bit in the output. Simply put, it

replaces TRUE with FALSE and vice versa

Input Output

0 1

1 0

In C and C++, the symbol ~ is used to represent a binary NOT.

Consider a case where b = 4 (i.e. binary 0100). If c = ~ b, then c is equal to 11 (i.e. binary 1011). Each

bit of the input has been inverted.

Bit Shifts “<<” and “>>”
The bits comprising a binary numeral can be shifted to the left or right. It should be evident that

each shift is equivalent to multiplying or dividing the numeral by two.

In C and C++, the symbols << and >> are used to shift bits to the left and right respectively.

Consider a case where b = 4 (i.e. binary 0100). If c = b>>2, then c is equal to 1 (i.e. binary 0001). Each

bit of the numeral has been shifted two spaces to the right. As bits are shifted out at one end, zeroes

are shifted in at the other.

Compound Operators
As with arithmetic operators, the binary operators can be combined with the = symbol, to create

compound operators.

Again these are overloadable in C++.

Operator name Syntax Code equivalent

Binary AND assignment a &= b a = a & b

Binary OR assignment a |= b a = a | b

Binary XOR assignment a ^= b a = a ^ b

Left shift assignment a >>= b a = a >> b

Right shift assignment a <<= b a = a << b

Bit-flags and Bit-masks
A common use of binary operators is in setting and checking a series of flags pertaining to the

properties of the item represented by the data structure or class. We’ll use superheroes to

demonstrate this.

Imagine that we have a game involving many superheroes with various different super-powers.

There are sixteen possible superpowers, and each hero can have any combination of those powers.

We therefore need a set of flags to indicate whether each hero has each superpower. We can store

this information within a single 16 bit variable for each hero, by the use of bit flags.

We do this with a series of #defines, each set to a single binary digit (ie a power of two). For

example, the first bit may be used to define whether the superhero can fly, the second bit for X-Ray

vision, etc.

 #define SUPER_POWER_FLYING 1

 #define SUPER_POWER_XRAYVISION 2

 #define SUPER_POWER_STRENGTH 4

 #define SUPER_POWER_INVISIBILITY 8

In order to test whether a character can fly, we use the binary AND operator:

 If (pHero-> iPowerFlags & SUPER_POWER_FLYING)

This test will pass all heroes who have the “flying” bit set in the iPowerFlags integer, irrelevant of

what other flags may be set.

To set the flag, we use

 pHero-> iPowerFlags |= SUPER_POWER_FLYING;

This statement uses the binary OR assignment to set the bit representing “flying” to TRUE without

affecting any of the other flags in the integer.

To reset the flag to FALSE, we use

 pHero-> iPowerFlags &= ~SUPER_POWER_FLYING;

which uses the binary AND assignment operator to compare with the inverse of the flag for flying (ie

the NOT operator turns 0001 into 1110). Again this will reset the “flying” flag to FALSE without

affecting any other flags in the integer.

We can now create characters with any combinations of the super-powers, and reliably test which

ones are required by specific algorithms.

This approach is widespread in games code – used to flag anything from graphical rendering

properties, to AI properties, to physics properties, etc. It saves memory compared to storing a full

Boolean variable (usually the same size as an integer) for each flag and, as it uses the bitwise

operators, it is very fast. The definitions of the flags are often knows as “bit-masks”, as they mask

out the data which is not relevant, without affecting it.

Code Sample
The simple code sample sets up a basic class “Superhero” consisting of a integer containing a set of

bit-flags, and a method for testing which powers the hero has. The main loop creates a hero, sets

some flags, and tests them. It then removes one of the flags and tests them again.

#include <iostream>
using namespace std;

#define SUPER_POWER_FLYING 1
#define SUPER_POWER_XRAYVISION 2
#define SUPER_POWER_STRENGTH 4
#define SUPER_POWER_INVISIBILITY 8

class Superhero
{
public:
 void TestPowers();
 int iPowerFlags;
};

/***
* Superhero::TestPowers
*
**/
void Superhero::TestPowers()
{
 //test for power flags using the binary AND
 if (iPowerFlags & SUPER_POWER_FLYING)
 {
 cout << ("Can Fly\n");
 }
 if (iPowerFlags & SUPER_POWER_XRAYVISION)
 {

 cout << ("Can See Through Walls\n");
 }
 if (iPowerFlags & SUPER_POWER_STRENGTH)
 {
 cout << ("Is Strong\n");
 }
 if (iPowerFlags & SUPER_POWER_INVISIBILITY)
 {
 cout << ("Can Disappear\n");
 }
}

/***
* main
*
**/
int main()
{
 int i;
 Superhero Superman;
 //initialise the flags to zero
 Superman.iPowerFlags = 0;
 //Set his superpowers using the binary OR assignment
 Superman.iPowerFlags |= SUPER_POWER_FLYING;
 Superman.iPowerFlags |= SUPER_POWER_XRAYVISION;
 Superman.iPowerFlags |= SUPER_POWER_STRENGTH;

 Superman.TestPowers();
 cout << "Enter any number ";
 cin >> i;

 //Remove a power using the binary AND assignment and the binary NOT
 Superman.iPowerFlags &= ~SUPER_POWER_FLYING;

 Superman.TestPowers();
 cout << "Enter any number ";
 cin >> i;

 return 0;
}

Exercises
 Practice converting numbers between decimal and binary. Use a pen and paper for this, look

around and write down the binary equivalent of any numbers you see.

 Use a pen and paper to perform binary AND, OR and XOR operations on two numbers.

 Extend the superhero code to include some more heroes with different powers. Add three

powers which are SUPERPOWER_ROCK, SUPERPOWER_PAPER and SUPERPOWER_SCISSORS.

Write the ode which decides which characters win in a game of Rock, Paper, Scissors.

