
Lesson 12 - Operator Overloading

Customising Operators

Summary

In this lesson we explore the subject of Operator Overloading.

New Concepts

Operators, overloading, assignment, friend functions.

Operator Overloading

In C++ it is possible to redefine many operators (e.g. +, -, *) that have so far provided arithmetic
operations on primitive types like int, double etc. For instance, take a statement like z = x + y.
The C++ language knows how to compute such a statement when the operands (x, y and z) are
integer types. However, what if the operands consist of classes we’ve defined? Take a class like the
Matrix class defined previously. We might like to be able to state x = y * z;, where x, y and z are
Matrix objects, because these are valid operations in matrix algebra. With C++ we can express such
a statement using Operator Overloading. In this lesson we will take our Matrix class from lesson 11,
and implement functions and methods so that our Matrix objects can be manipulated in this way.

First we need to add our operator overloading methods to our Matrix class declaration. Take a
look at the modified declaration beginning on line 1. On line 9 we have added a new class method
called operator= that returns a reference to a Matrix<T> and takes a constant reference to another
Matrix<T>. The strange name of this method actually states that this method is overriding the
equals (=) operator for Matrix objects. Shortly we will implement this method and be able to express
statements such as x = y where x and y are Matrix objects.

Now take a look at lines 10-11 and 12-13. On line 11 we overload the stream operator (<<) so
we can pass Matrix objects to an iostream, like cout. This will allow us to easily display Matrix
contents to screen. On line 13 we overload the multiplication operator so we can multiply two Matrix
objects together.

1 template <typename T>
2 class Matrix
3 {
4 public:
5 Matrix(int x = default_x , int y = default_y);
6 Matrix(const Matrix <T>& src);
7 ~Matrix ();
8 // overloaded operators on class
9 Matrix <T>& operator =(const Matrix <T>& rhs);

10 template <typename E>
11 friend ostream& operator <<(ostream& ostr , const Matrix <E>& mtx);
12 template <typename E>
13 friend Matrix <E> operator *(const Matrix <E>& a, const Matrix <E>& b);
14
15 int get_x_size () const { return x_size ;}
16 int get_y_size () const { return y_size ;}
17 T get_element(int x, int y) const;
18 void set_element(int x, int y, T elem);
19 // constant elements
20 static const int default_x = 3;
21 static const int default_y = 3;
22 protected:
23 T** cells;
24 int x_size;
25 int y_size;
26 };

1

operator overloading.cpp

There are a few new features being used in lines 10-13, so let’s step through them one by one.
First note that these are actually (global) functions rather than class methods. They do not belong
specifically to the Matrix class but can access its private/protected data members because they are
declared friend functions. Although this may seem counter-intuitive to allow access to such data-
members when we took the trouble to protect them, in limited cases it can be useful. One of those
cases is here, when the return type is not the original object of that class. In our Matrix example,
the operator= method (line 9) will return the original object of the class and is therefore declared as
a class method. However the operator<< function (line 11) will return an ostream reference and the
operator* function (line 13) will return another Matrix object. As a good rule of thumb therefore,
it makes sense to declare these as global friend functions.

Note the syntax on lines 10 and 12 denoting that these are template functions, beginning with the
declaration template <typename E>. As the Matrix class is a template, we have to provide template
functions to adapt to difference specialisations of Matrix objects. Note however we use <typename E>

for our functions to differentiate from <typename T> for our class (see line 1).
Now let’s move on to the actual definitions of our overloaded operators. First let’s examine our

class method for overloading the assignment operator with Matrix objects (line 27). We begin with
an if statement on line 29. Notice the keyword this here. Within a class method you can use the
keyword this when you want to refer to the actual object whose method “this is”; this returns a
pointer to the object. The reason for this if statement therefore is to verify whether the parameter
rhs (“right-hand-side” of the expression), is actually the same object we will be assigning to. It’s
legal syntax in C++ to say x = x, but in such cases we simply want to return the original x. We
verify this by comparing the memory addresses of the the pointer this and rhs. If they’re the same,
we simply return this.

Next we release any memory held in the object to be re-assigned (lines 32-35). If we omitted this
step we would inflict a memory leak because there would be no way to refer to the original Matrix
object after the assignment operation took place. Following our clean up operation, we allocate new
memory for the data that will be held in our re-assigned object (lines 38-42). Finally we copy the
values from the rhs parameter to the re-assigned object (lines 45-49).

27 template <typename T>
28 Matrix <T>& Matrix <T>:: operator =(const Matrix <T>& rhs) {
29 if(this == &rhs) return (*this);
30
31 // release old memory
32 for(int i = 0; i < x_size; ++i) {
33 delete [] cells[i];
34 }
35 delete [] cells;
36
37 // allocate new memory
38 cells = new T*[rhs.x_size];
39 for(int i = 0; i < rhs.x_size; ++i) {
40 cells[i] = new T[rhs.y_size];
41 memset(cells[i], 0, (rhs.y_size * sizeof(T)));
42 }
43
44 // copy values
45 for(int i = 0; i < rhs.x_size; ++i) {
46 for(int j = 0; j < rhs.y_size; ++j) {
47 cells[i][j] = rhs.cells[i][j];
48 }
49 }
50 return *this;
51 }

operator overloading.cpp

Now let’s examine our definition for overloading the stream operator <<. Recall earlier we noted
this is a global friend function, rather than a class method. Hence note that we do not use the scope
operator (::) before the function name operator<<. The first parameter of this function you’ll see is
a reference to an ostream, or output stream. Streams crop up in a variety of tasks such as file I/O
and networking code, but in this case we can use the ostream parameter to pass cout to this function
and print our Matrix object to screen. Our Matrix object mtx is the second function parameter, in
the form of a constant reference.

2

In the operator<< function we iterate through each element of the Matrix object and feed it to the
ostream. Here we can stipulate the format to print our Matrix. Note that because this was declared
as a friend function we can access all the private and protected data members of the mtx object.
Finally we return the ostream as a reference.

52 template <typename E>
53 ostream& operator <<(ostream& ostr , const Matrix <E>& mtx) {
54 for(int i = 0; i < mtx.x_size; ++i) {
55 for(int j = 0; j < mtx.y_size; ++j) {
56 ostr << mtx.cells[j][i] << ", ";
57 }
58 ostr << "\n";
59 }
60 ostr << "\n";
61 return ostr;
62 }

operator overloading.cpp

Next we define our function for overloading the multiplication operator. This function will accept
two Matrix references, a and b, and compute and return their product matrix. In order to compute the
product of two matrices we implement 3 ‘nested’ for loops that allow us to index into our matrices.
The result appears rather complicated but it allows us to pull a row x from matrix a and perform
vector multiplication with a column y from matrix b, which we save in the matrix result. Finally we
return result.

63 template <typename E>
64 Matrix <E> operator *(const Matrix <E>& a, const Matrix <E>& b) {
65 Matrix <E> result(a.x_size , b.y_size);
66 for(int i = 0; i < a.x_size; ++i) {
67 for(int j = 0; j < a.x_size; ++j) {
68 for(int k = 0; k < a.x_size; ++k) {
69 result.cells[i][j] += (a.cells[k][j] * b.cells[i][k]);
70 }
71 }
72 }
73 return result;
74 }

operator overloading.cpp

Finally it’s time to create some Matrix objects and try out our overridden operators. On line 76
we create mtx1. Notice on line 78 we pass our matrix to cout via the overridden stream operator <<.
On lines 80 and 84 we create another two matrices and on line 85 we test our assignment operator.
The effect of this is to release the memory held in mtx3 before assigning its contents to the values of
mtx2. Finally on line 88 we create a new Matrix object product by the multiplication of mtx1 and
mtx2, using our overridden multiplication operator.

75 int main() {
76 Matrix <int > mtx1;
77 mtx1.set_element (1,1,4);
78 cout << mtx1;
79
80 Matrix <int > mtx2;
81 mtx2.set_element (2,2,2);
82 cout << mtx2;
83
84 Matrix <int > mtx3;
85 mtx3 = mtx2;
86 cout << mtx3;
87
88 Matrix <int > product = (mtx1 * mtx3);
89 cout << product;
90
91 return 0;
92 }

operator overloading.cpp

3

Algorithmic Complexity

There are numerous ways and means of optimising one’s code to squeeze the best performance
from our applications. Possibly the most effective, yet overlooked means of optimising code
begins with the design of the algorithm used. When evaluating the design of our algorithms
we tend to estimate the performance of an algorithm in terms of the input size. If we analyse
a sorting or searching algorithm, for instance, the input size is the number of elements to be
sorted or searched. Furthermore, we usually categorise algorithms in terms of their time and
space requirements.
Most algorithms perform differently depending on the input elements provided, but usually
we are most interested in the upper bound performance a.k.a the ‘big O’ complexity, partly
because the worst case behaviour is often the dominant behaviour in an algorithm. Consider,
for example, searching a data-set for an element. It may be that most of the time the element
is not present which may cause the worst case of the searching algorithm to execute. To find
the upper bound we estimate the costs of each expression in the algorithm and ignore constant
modifications as these become insignificant as the input size grows.
For the purposes of demonstration, let’s analyse the performance of Insertion Sort.
Insertion Sort comprises of essentially an outer loop and an inner loop. The outer loop
iterates from 1 to n − 1 where n is the number of elements to be sorted. The inner loop,
meanwhile, iterates until the correct position in the final array of numbers has been found. If
we begin with the behaviour of the inner loop then in the worst case, it will have to iterate
through the whole array before locating a position to insert a new element. This means the
inner loop iterates once for the 1st element, twice for the second and so forth until the outer
loop exits giving us a performance of T (n) = (n(n + 1)/2) − n. We ignore modifications made
by constant elements leaving us with a running time of O(n2).

for(int i = 1; i < arr.size; ++i) { // outer loop iterates over n - 1 elements
int j = i;
while(j > 0 && arr[j - 1] > arr[j] { // inner loop locates correct position in array

swap(arr , j, j - 1); // perform a constant time swap operation
j--;

}
}

insertion sort.cpp

We can now compare the performance of Insertion Sort with other sorting algorithms. The
Quick Sort algorithm, for instance, has a upper bound of O(n log(n)) in the average case and
O(n2) in the worst case. We can assume (with some important caveats) that as the input size n
grows, Quick Sort will always be faster at sorting n numbers compared to Insertion Sort.
Furthermore, the difference in performance time between Quick Sort and Insertion Sort

will grow as n increases. It’s important to realise, however, when comparing the behaviour of
algorithms we are primarily interested in the rate of change in behaviour over time with ever
greater values of n. Consequently, we tend to be concerned with cases where n is large.
On a final note, keep in mind that although one algorithm may have superior performance
over another, it may still be entirely sensible to favour an inferior algorithm in certain circum-
stances. You might want to employ a brute force search algorithm for small values of n, for
example, which will be far quicker than an algorithm like Binary Search which has excellent
performance in cases where n is large and requires a sorted data set. Similarly, when decid-
ing on a sorting algorithm, in cases where the items to be sorted are already ‘mostly sorted’,
Insertion Sort will typically provide superior performance to Quick Sort.

Average Case Behaviour (Time complexity)

O(n2) O(n log(n)) O(n) O(log(n))
Insertion Sort Quick Sort Linear Search Binary Search
Bubble Sort Heap Sort

Merge Sort

Worst Case Behaviour (Time complexity)

4

O(n2) O(n log(n)) O(n) O(log(n))
Quick Sort Heap Sort Linear Search Binary Search
Insertion Sort Merge Sort
Bubble Sort

Complexity of some generic tasks

Complexity Example
O(1) Fetching the first element from a set of data
O(log n) Splitting a set of data in half and then repeatedly splitting those halves
O(n) Traversing a set of data
O(n log(n)) Repeatedly splitting a set of data in half and traversing each half
O(n2) Traversing a set of data for each member of another equally sized set
O(2n) Generating all possible subsets of a set of data
O(n!) Generating all possible permutations of a set of data

5

