
Lesson 15 - Multi-Threading

Programming Multiple Threads of Execution

Summary

This lesson provides demonstrates how to adapt a C++ program to incorporate Multi-Threading in
the Windows NT environment.

New Concepts

Multi-Threading, Mutexes, Wrapper Classes, Abstract Classes, Pure Virtual Methods.

Multi-Threading

This lesson is intended to provide an introductory demonstration of multi-threading; the practise of
using multiple, concurrently executing threads of execution within the same program. Multi-threading
falls under the subject of Concurrency Control which is in itself a broad and complex topic within
Computing Science. We do not attempt to provide a full demonstration of multi-threading capabilities,
rather we provide enough information to get started with program some rudimentary applications of
threads.

Multi-Threading was not formally a feature of the C++ Language as it was in some other lan-
guages like Java or C#. All that has changed, however, in the new C++11 standard. This now
gives you the option of writing your own interface to the Operating System’s threads or using the
threading capabilities afforded by the compiler (if it supports the new standard). In this lesson we
will demonstrate both approaches; first we will create our own thread class and then we will have
a play with the new threading features. It’s worth knowing how to write your own thread class, as
you may find yourself with a compiler which does not support the new standard, or you may wish to
customise your threads in a way which is not supported by the standard (to force a thread to run on
a sub-set of processors, for example).

When writing our own thread class, we will need to invoke library functions provided by the
Operating System and for this lesson we shall be using Windows NT. The library function headers we
need can be obtained by including the windows.h header file so let’s begin by including it (see line 1).

1 #include <windows.h>
2 #include <iostream >
3 #include <vector >
4 #include <string >
5
6 using std:: vector;
7 using std:: string;

threads.cpp

Next what we want to do is provide an Abstract Thread Class, to act as a ‘wrapper’ around the
threading library function calls of the host Operating System. The aim of a ‘wrapper’ class is to
provide a generic class interface rather than exposing the application programmer to the specifics of
the Operating System. Lines 8 to 24 provide the declaration of our Abstract Thread Class.

When we say this is an ‘Abstract’ class what do we mean? Notice the syntax of the run method
declaration on line 17. You’ll note that we assign this method to zero as if it was a variable, i.e.
run() = 0. When we declare class methods like run we are saying that no concrete implementation
for that method exists for this class. The effect is that the class is abstract and cannot be instantiated.
What you can do however is extend that class, but you must provide an implementation of the run

method. This may sound rather counter-intuitive now, but this is actually pretty common. For

1

instance, in the run method we intend to define the work that the Thread will undertake. While the
rest of the methods provide common functionality to every Thread we create, the run method will
differ as we wish to create different Threads for different tasks.

We could have simply provided a run method implementation in the Thread class and overridden
this method in any sub-class, but sometimes you simply don’t know what that method should do
at the super-class level. In addition, if you implement the run method there’s no guarantee that an
application programmer will override it. Using Abstract Classes is a stronger requirement that forces
the application programmer to provide an implementation.

Note that the Abstract Thread class uses some types that you may not have seen before like
DWORD (lines 15 and 20), LPVOID (18) and HANDLE (19). These are simply basic types that have been
redefined in the windows.h file to provide a consistent set of types when programming in a Windows
environment. For example, a DWORD is a type definition for a ‘double word’; typically a 32-bit value
on a 32-bit processor. A HANDLE is a ‘void pointer’, useful for allowing us to point to any type. You
can find a list of these Windows type definitions at the following URL:

http://msdn.microsoft.com/en-us/library/aa383751(VS.85).aspx.

Returning to the Thread Class however we see that there is a public start method which we shall
see, initiates the thread function declared on line 18. There is a join method which our main thread
will call before terminating, and a get_id method for returning a unique identifier for the Thread,
assigned by the Operating System.

Note that we make the Copy Constructor and Assignment Operator private. This is sometimes
necessary because we want to ensure that an object cannot be copied or reassigned. We follow this
style here because we want our Threads to be initiated in a strictly defined way to avoid inconsistencies
arising with shared data. We’ll see exactly what this means soon.

8 class Thread
9 {

10 public:
11 Thread (){}
12 virtual ~Thread (){ CloseHandle(thread_handle);}
13 virtual void start ();
14 virtual void join ();
15 virtual DWORD get_id () const {return tid;}
16 protected:
17 virtual void run() = 0;
18 friend DWORD thread_ftn(LPVOID T);
19 HANDLE thread_handle;
20 DWORD tid;
21 private:
22 Thread(const Thread& src);
23 Thread& operator =(const Thread& rhs);
24 };

threads.cpp

From line 25 to 29 we provide the definition for the thread_ftn. Notice that this is simply
a global function declared in the abstract Thread class which being a ‘friend’ function, can access
protected/private data. Note that thread_ftn performs a ‘static cast’ of the function parameter T to
a Thread pointer, before calling its run method and returning NULL.

On lines 31 to 39 we define the start method. Notice the use of the library function CreateThread

here. Windows provides this function which we use to create a new Thread. The important parameters
to this function are the thread_ftn function, the this pointer and the tid address. These represent
the function our thread will execute, the function parameter and the address of the variable that will
hold the unique ID of this Thread, respectively.

Note that CreateThread requires a function as its 3rd parameter. This is why we had to make
thread_ftn a global function as opposed to a class method. The CreateThread library call is defined
in the C Programming Language and doesn’t know how to handle class methods.

25 DWORD thread_ftn(LPVOID T) {
26 Thread* t = static_cast <Thread*>(T);
27 t->run ();
28 return NULL;
29 }
30
31 void Thread ::start() {
32 thread_handle = CreateThread(
33 NULL , // default security
34 0, // default stack size
35 (LPTHREAD_START_ROUTINE)&thread_ftn , // thread function name
36 (LPVOID)this , // argument to thread function

2

http://msdn.microsoft.com/en-us/library/aa383751(VS.85).aspx

37 0, // use default creation flags
38 &tid);
39 }

threads.cpp

On examination you’ll note that the join method simply calls another library function,
WaitForSingleObject. When the calling thread invokes this method it will be suspended until the
thread identified by thread_handle has finished its work. The second parameter to this function is
the amount of time the calling thread should wait. We’ve set this to INFINITE so that the thread will
wait indefinitely, however we could have specified a time-period here.

40 void Thread ::join() {
41 WaitForSingleObject(thread_handle , INFINITE);
42 }

threads.cpp

Now that we have our abstract thread class, it’s time to extend it. On lines 43 and 49 we declare
two sub-classes of Thread to perform various tasks. We have a Producer on line 43 that will ‘produce’
a message, and a Consumer (line 49) that will ‘consume’ it. In a moment we’ll create a shared ‘buffer’
to hold the message, but for now we declare that we are implementing the run method in our Producer
and Consumer classes (lines 46 and 52).

43 class Producer : public Thread
44 {
45 protected:
46 virtual void run ();
47 };
48
49 class Consumer : public Thread
50 {
51 protected:
52 virtual void run ();
53 };

threads.cpp

For our shared message buffer we simply create a vector of strings (see line 58). We declare our
buffer at global scope so that both our Producer and Consumer have access to it.

55 /**
56 * shared buffer
57 */
58 vector <string > buffer;

threads.cpp

Next we define the run methods for our Producer and Consumer classes. First take a look at the
Producer’s run method on line 55. On line 57 we simply call the push_back method of the buffer to
add a new message. On lines 56 and 58 we ‘lock’ and ‘unlock’ a ‘mutex’ object. We’ll shortly explain
the purpose behind these statements so ignore them for now. Now take a look at the run method
for the Consumer thread on line 65. Here we are checking to see if there is a message in the buffer
by examining its size (line 69). If there is, we display the message to screen (line 70) and set a ‘flag’
called done to be true. This indicates that the Consumer thread is finished and it subsequently exits
the loop. Our simple example only expects one message. Again you’ll note the calls to ‘lock’ and
‘unlock’ a ‘mutex’ object on lines 68 and 73.

59 void Producer ::run() {
60 mut.lock_mutex ();
61 buffer.push_back("Hello from Producer\n");
62 mut.unlock_mutex ();
63 }
64
65 void Consumer ::run() {
66 BOOL done = FALSE;
67 while (!done) {
68 mut.lock_mutex ();
69 if(buffer.size() > 0) {
70 std::cout << "got msg: " << buffer.front() << "\n";
71 done = TRUE;
72 }
73 mut.unlock_mutex ();
74 }
75 }

threads.cpp

3

Now what was the purpose behind those calls to ‘lock’ and ‘unlock’ a ‘mutex’? A ‘mutex’ (which
is short for mutual exclusion), is a way of granting exclusive access to an object when there exist
multiple threads who can interact with that object. The idea is that each thread attempts to ‘lock’
the mutex before it trys to access a shared object. Only one thread can ‘hold the lock’ at any one
time, so while one thread will succeed in acquiring it, the remaining threads are forced to wait. The
remaining threads typically wait until the owning-thread relinquishes the lock. When the lock is
released, the waiting threads can try again.

We want to alleviate the details of this process from the user-programmer as much as possible. Calls
to create, lock and unlock a mutex require the invocation of library functions, as with our Threads.
Once again we will create a wrapper object around these library calls in the form of a MutexClass,
which we can use to create mutex objects. See lines 76 to 85 for our MutexClass declaration. Note
that it consists of a HANDLE to a mutex, in the form of a protected data field. In addition there are
methods lock_mutex and unlock_mutex to ‘lock’ and ‘unlock’ the mutex, respectively.

76 class MutexClass
77 {
78 public:
79 MutexClass ();
80 virtual ~MutexClass ();
81 virtual void lock_mutex ();
82 virtual void unlock_mutex ();
83 protected:
84 HANDLE mutex;
85 };

threads.cpp

Our MutexClass’ Constructor calls the library function CreateMutex and saves the return value
in our mutex data field (see lines 86 to 90). We also implement a Destructor that calls the library
function CloseHandle on the mutex field, so this HANDLE is removed after we’re done with it.

86 MutexClass :: MutexClass () {
87 mutex = CreateMutex(
88 NULL , // default security
89 FALSE , // initially not owned
90 NULL); // unamed mutex
91 }
92
93 MutexClass ::~ MutexClass () {
94 CloseHandle(mutex);
95 }

threads.cpp

In the lock_mutex method we call the library function WaitForSingleObject. When this function
is invoked, the calling thread will attempt to acquire the lock on the mutex. If the lock is already
held by another thread, it will wait until the other thread releases it. All this is taken care of by the
library function, we simply have to provide a time limit for the wait. Note however that we pass the
argument INFINITE, denoting that we’re willing to wait indefinitely. In a real application we would
perform some error checking on the return value of this function, but in the interests of succinctness,
we have omitted those steps here. Note the unlock_mutex method simply calls the ReleaseMutex

library function (line 103), thus relinquishing the lock.

96 void MutexClass :: lock_mutex () {
97 WaitForSingleObject(
98 mutex , // handle to mutex
99 INFINITE); // no time -out interval

100 }
101
102 void MutexClass :: unlock_mutex () {
103 ReleaseMutex(mutex);
104 }

threads.cpp

Now we create a global shared mutex object from the MutexClass (line 108). Take another look
at the run methods of the Producer and Consumer threads on lines 59 and 65 respectively. In
particular, note our use of the mutex to guard access to the shared buffer by calling the lock_mutex

and unlock_mutex methods.

105 /**
106 * global mutex object
107 */

4

108 MutexClass mut;

threads.cpp

Finally, we implement the main function. We begin by creating a Producer and Consumer thread
on the stack (lines 111 and 112). Next we start the Consumer thread on line 114. After this statement
has executed there will exist a new thread of execution, scheduled to be executed by the Operating
System. There will also be a “main” thread of course, that was created by the Operating System to
execute the main function.

We then invoke another library function called Sleep on line 115. This function will tell the
currently executing thread to sleep for the amount of milliseconds specified in the Sleep function’s
argument (1000). The currently executing thread is the ‘main’ thread, hence the ‘main’ thread will
be suspended for 1000 milliseconds before it starts the Producer thread on line 116.

While ‘main’ is suspended it’s very likely that the Consumer thread will execute its run method,
now that it has been started. However, because the buffer size is still 0 (see the test on line 69), it
will continue to loop until the Producer thread is started and deposits a message in the buffer. This
doesn’t take place until the ‘main’ thread awakes from the Sleep function and starts the Producer

thread on line 116.
Once the ‘main’ thread has completed step 116, it waits for the Producer and Consumer to complete

by calling their join methods. If ‘main’ didn’t carry out these steps it may reach the end of the main

function before the Producer and Consumer had a chance to finish their run methods. This is bad from
the perspective of Producer and Consumer because when the main function completes, the program
is terminated.

109 int main() {
110
111 Producer prod;
112 Consumer cons;
113
114 cons.start ();
115 Sleep (1000);
116 prod.start ();
117
118 prod.join ();
119 cons.join ();
120
121 return 0;
122 }

threads.cpp

New Feature

We’ve seen that writing our own thread class has not required too much code. Creating and launching
a new thread in C++11, however, is even simpler, so let’s do just that. We begin with including the
thread and the mutex header files on lines 1 and 2 respectively. We then create a Counter class, to
encapsulate thread-safe operations on a shared counter (lines 5 to 22). The Counter has methods to
increment (lines 11-14) and decrement (lines 16-19) a shared counter, called mCount, which we have
declared on line 6.

1 #include <thread >
2 #include <mutex >
3 #include <iostream >
4
5 class Counter {
6 long mCount;
7 std::mutex mMutex;
8 public:
9 Counter (): mCount (0), mMutex () {}

10
11 void increment () {
12 std::lock_guard <std::mutex > guard(mMutex);
13 mCount ++;
14 }
15
16 void decrement () {
17 std::lock_guard <std::mutex > guard(mMutex);
18 mCount --;
19 }
20
21 long count() { return mCount; }

5

22 };

cpp11threads.cpp

We make the Counter class thread safe by using a std::mutex provided in the new C++11
standard (see line 7). Before we increment mCount we lock the mutex via a std::lock_guard object
(see line 12). We could have called the lock method of mMutex directly, but we would have use a
try\catch block to ensure that we unlocked the mutex in the event of an exception being thrown.
By using the std::lock_guard approach instead, we let the guard ensure the mutex is released for
us.

23 void increment(Counter* counter) {
24 for(int i = 0; i < 100000; ++i) {
25 counter ->increment ();
26 }
27 }
28
29 void decrement(Counter* counter) {
30 for(int i = 0; i < 100000; ++i) {
31 counter ->decrement ();
32 }
33 }
34
35 Counter counter;
36
37 int main(int argc , char* argv []) {
38
39 std:: thread producer(increment , &counter);
40 std:: thread consumer(decrement , &counter);
41
42 std::cout << "Launch" << std::endl;
43 std:: chrono :: milliseconds duration (1000);
44 std:: this_thread :: sleep_for(duration);
45
46 producer.join ();
47 consumer.join ();
48
49 if(counter.count() != 0) {
50 std::cout << "race condition: " << counter.count () << std::endl;
51 }
52 return 0;
53 }

cpp11threads.cpp

We now turn to our threads. As C++11 already provides a thread class (std::thread), we simply
create a producer and consumer thread (see lines 39 and 40). We pass to their constructors a function
to execute and a pointer to a global Counter object. The ‘producer’ thread is passed the increment

function (lines 23-27) and the ‘consumer’ thread is passed the decrement function (lines 29-33) and
each thread begins working as soon as it is created.

Meanwhile in the main thread, we create a single second time duration with a chrono::milliseconds
object (line 43). We then send the main thread to sleep using the this_thread::sleep_for method.
Before main can exit, we have it join with both the producer and consumer (line 46 and 47). Finally,
we check the result of the counter to ensure a race condition did not occur. As both the producer

and consumer modify the counter an equal number of times, the counter should end up with a value
of zero.

Exercises

1. Create a ‘hello world’ thread which executes a loop, printing to screen the message ‘Hello from
Thread (handle)’ 10 times. Extend the Thread class provided.

2. Create a thread-safe Binary Search Tree class which uses a single lock to ensure only one thread
at a time can insert comparable objects (this is coarse-grained locking).

3. Create a thread-safe Binary Search Tree class which uses a lock-per-node so that threads can
insert comparable objects concurrently (this is fine-grained locking).

6

