
Lesson 5 - Memory

Runtime Allocation on the heap

Summary

Understand about allocating and freeing memory. Understand the difference between the stack and
the heap.

New Concepts

New, Delete, the stack and the heap.

Memory

When we declare a variable such as a on line 6, we are telling the compiler to create this variable in
an area of memory called the “stack”. Stack variables are sometimes referred to as “local variables”
because they only exist within a certain scope (more on scope later).

Variables on the stack can hold any predefined type, including pointers, so we can also declare
pointers on the stack like the declaration of the pointer variable b on line 7.

You have already seen how you can assign a value to a variable on the stack, with the assignment
operator =. On line 8 we assign the stack variable a to hold the value 100.

1 #include <iostream >

2

3 using namespace std;

4

5 int main () {

6 int a;

7 int* b;

8 a = 100;

memory.cpp

Let’s introduce the new keyword (see line 9). The new keyword allows us to allocate memory on
something called the “heap” instead of the stack. The keyword new is provided by C++ to handle the
creation of variables on the heap for us. In order to use new you must specify the type of variable to
create so that the compiler knows how much memory to allocate on the heap. Using new also returns
the memory address where the newly allocated memory is located, so you must assign the result of
new to a pointer type. The type of pointer will usually match the type of memory allocated.

Now we have a pointer to an integer called b which points to an address located in heap memory.
The cout on line 11 displays this. We say the pointer b exists on the stack but the memory pointed
to by b exists on the heap.

After calling new the memory is initialised to zero and we can verify this by dereferencing the
pointer b (see the cout on line 13). If we want to assign the newly created heap memory to a value
we must dereference pointer b and assign it to an integer value, as shown on line 15.

9 b = new int;

10

11 cout << "The pointer b points to the memory address " << b

12 << " located on the heap\n";

13 cout << "The value in memory location b is " << *b << "\n";

14

15 *b = a;

1

16

17 cout << "The value of stack variable a is " << a << "\n";

18 cout << "The ’heap’ memory pointed to by b contains " << *b << "\n";

19

20 delete b;

21 b = NULL;

22

23 return 0;

24 }

memory.cpp

Now the area of heap memory pointed to by b contains a copy of the value assigned to the stack
variable a. Two memory locations contain the value 100, one on the stack and the other on the heap.
We display this fact using the cout statements on lines 17 and 18.

The memory containing stack variables is automatically released when the program execution
leaves their scope. Variables allocated on the heap however are not automatically released like stack
variables. it is very important that the programmer releases heap memory when finished with it or
else the memory cannot be reused and a “memory leak” will be created. C++ provides the keyword
delete for this task which expects a pointer to a memory address on the heap (see line 20).

When delete it called on a pointer variable it is good programming practise to set the pointer to
NULL which we do on line 21. If you subsequently try to access a pointer that has been freed with
delete you will probably cause your program to crash.

Having reached the end of the function, the stack variables int a and int* b will be automatically
released. If you had not released the heap memory previously pointed to by b it would have be lost
for the duration of the program execution always remember to free memory allocated with new once
you are finished with it, by calling delete on the pointer which points to it!

New Feature

Shared pointers are an addition to C++ 11, along with Unique and Weak pointers to replace the
now obsolete ‘auto ptr’ type. The code snippet below shows one of the benefits of shared pointers
in particular. First a std::list is created, comprising of shared pointers to integer types (line 29).
Then 100 shared pointers are added to the list (lines 30 to 32). With ordinary pointers, each element
of the list would have to be manually deleted to prevent memory leaks from occurring. With shared
pointers, however, a reference count is automatically consulted when a shared pointer goes out of
scope (line 33). If there are no longer any references to the memory pointed to by the shared pointer,
then that memory can be automatically reclaimed and a memory leak is avoided.

25 #include <list >

26 #include <memory >

27 ...

28 {

29 std::list <std::shared_ptr <int >> intList;

30 for(int i = 0; i < 100; i++) {

31 intList.push_back(std:: make_shared <int >(i));

32 }

33 }// no memory leaks!

memory.cpp

Care must be taken with shared pointers, however, to ensure that reference cycles are not intro-
duced when two shared pointers point to each other’s memory. The code below demonstrates the
danger. We begin with ‘structs’ A and B (lines 34 and 35). A struct is simply a structure, like a
class, to group variables together (more on classes later). A and B each contain shared_ptr types
(see lines 39,40 and 45) and we have added print statements to our ‘structs’ so we can see when their
memory is reclaimed (lines 41 and 46).

34 struct A;

35 struct B;

36 struct C;

37

2

38 struct A {

39 std::shared_ptr bPtr;

40 std::shared_ptr <C> cPtr;

41 ~A() { std::cout << "A is deleted" << std::endl; }

42 };

43

44 struct B {

45 std::shared_ptr <A> aPtr;

46 ~B() { std::cout << "B is deleted" << std::endl; }

47 };

48

49 struct C {

50 std::weak_ptr <A> aptr;

51 ~C() { std::cout << "C is being deleted" << std::endl; }

52 };

53

54 int main(int argc , char* argv []) {

55 {

56 std::shared_ptr <A> ap(new A);

57 std::shared_ptr bp(new B);

58

59 ap->bPtr = bp;

60 bp->aPtr = ap;

61 }// objects should be destroyed but aren’t

62

63 {

64 std::shared_ptr <A> ap(new A);

65 std::shared_ptr <C> cp(new C);

66

67 ap->cPtr = cp;

68 cp->aptr = ap;

69 }// weak pointer solve the problem

70 return 0;

71 }

memory.cpp

We shall now create shared pointers to our ‘structs’ (inadvertently creating a circular dependency
in the process). On lines 56 and 57 we create our shared pointers and on lines 59-60 we set each
‘struct’s’ pointer to point to one another. On line 61 we close the scope of objects ap and bp, but
their respective memory cannot be released because of the circular dependency we have introduced.
When ap and bp go out of scope, each object’s reference count is decremented from 2 to 1 and so their
memory will not be released.

We can avoid circular dependencies, however, by employing a weak_ptr. A weak_ptr doesn’t use
the reference count mechanism of the shared pointer. When the only references remaining are weak
pointers types, then their memory can be reclaimed. We define a new struct type called C (lines 49-
52) which contains a weak_ptr type (line 50). Now on lines 63-69 we create struct A and struct C

objects. We then set each object to point to one another (lines 67-68). This time, however, we avoid
the circular dependency because we now have a weak pointer pointing to a shared pointer. The ap

object will go out of scope as normal on line 69, and the reference count used by the shared_ptr

is subsequently decremented and reaches zero. This only leaves a weak_ptr whose memory can be
reclaimed.

Exercises

1. What is “Stack Overflow” and why might a Recursive method be susceptible to this kind of
problem?

2. Memory Leaks are a problem associated with which type of memory? What must you do to try
and avoid causing Memory Leaks in your programs?

3. Amend the code to create a char variable on the stack and a string variable on the heap.

3

4. Examine some of the other options provided when calling new and delete. Amend the code to
create an array of 10 integers on the heap. Ensure that you release the memory you created
using the correct form of delete.

5. Tree structures are a widely used data construct in programming (including games program-
ming). One such tree structure is a Binary Search Tree which stores data in a manner that
allows fast searching. Familiarise yourself with this technique and write your own Binary Search
Tree using the code below to help you:

72 struct node {

73 int value;

74 struct node* left;

75 struct node* right;

76 };

77

78 struct node* root = NULL;

79

80 // implement the functions described by these headers

81 void insert_integer(struct node** tree , int value);

82 void print_tree(struct node* tree);

83 void terminate_tree(struct node* tree);

84

85 /**

86 * Main function

87 */

88 int main() {

89 // call your implemented functions here to test

90 // the binary search tree

91 return 0;

92 }

memory.cpp

A Tree can be considered as a collection of nodes, linked to one another via pointers. You have
been given the definition of a node in the Binary Search Tree. This is in the form of a struct;
a record for holding together related variables.

You “build” the tree recursively using the insert_integer function. You will need to find the
correct place to insert a node to hold the new value, then create a node on the heap.

The print_tree function should print out the values in the tree in ascending order, and the
terminate_tree function should reclaim all the memory used in the tree.

4

