
Lesson 14 - Exception Handling

Recovering From Errors

Summary

In this lesson we describe the C++ Exception mechanism; the throwing and handling of exceptions
to detect and recover from erroneous program execution.

New Concepts

Exceptions, try/catch blocks, reading from a file.

Exceptions

In this lesson we describe the Exception mechanism provided by C++ for handling run-time errors
that invariably crop up during the execution of sophisticated programs. Exception handling can prove
rather complex sometimes, so we’ll start by explaining why we need an Exception mechanism, before
we talk about how it works.

In C Programs, the language predecessor of C++, the method of handling errors at run-time
involved returning an integer code from a function. The integer code (or error code) would inform the
calling function that something had gone awry in a certain way. For example, let’s suppose a function
attempted to perform division by zero, which mathematically speaking is not a defined operation. The
function could detect the zero divisor and return an integer code perhaps signalling a ‘bad argument’
to the function or a ‘bad arithmetic instruction’ requested. Problems arise with C style return codes
however. The first issue is consistency, where some functions may return the value 1 for success while
others 0. Returning an integer from a function as a return code prevents the function from returning
any other value too, and return codes can be ignored by an inexperienced or belligerent programmer.

The Exception Handling mechanism has been incorporated into C++ to address the short-comings
of the return-code method. Exceptions provide a consistent but versatile method of handling errors.
In addition they do not require or preclude functions (or methods) from returning integer values.
Finally, an exception that is ‘thrown’ cannot be ignored by the executing program. All that said,
however, Exceptions have their problems too: Exception handling can be complicated; memory-leaks
can be introduced without due care and a slight performance penalty may be incurred. You can avoid
them altogether and handle errors ‘the C way’ with a few modifications to code and compilation. Bear
in mind, however, that certain C++ library functions use Exceptions, so either way it makes sense to
acquaint yourself with them.

Without further ado, let’s demonstrate Exception Handling in a real program, see the exceptions.cpp
listing below. First we begin by including the stdexcept header file which contains the necessary
header information for using Exceptions (line 3). Note also that we include the headers string,
fstream and stdlib.h on lines 4 to 6. We’ll explain fstream and stdlib.h shortly, but for now a
word about Strings. The string header allows the use of the C++ string Class. A string is simply
a sequence of characters forming a word or sentence. In the C language, strings are simply repre-
sented as an array of chars, but C++ provides an object representation for convenient operations on
strings via class methods and overloaded operators. For instance, we can concatenate strings with the
addition operator (+) or even compare strings with equality/greater-than/less-than etc (=,>,<). On
line 10 we declare a constant global string to represent the name of a file we will use in the program.

1 #include <iostream >
2 #include <vector >
3 #include <stdexcept >
4 #include <string >
5 #include <fstream >

1



6 #include <stdlib.h>
7
8 using namespace std;
9

10 const string file_name = "data.txt";

exceptions.cpp

Next we define our first function read_scores on line 11. The purpose of this function is to open
the file data.txt, via the file_name string. Then it will read in the contents of that file, storing
the results to a vector called scores. Note that we pass the vector as a reference parameter to the
function. On line 12 we create an ifstream object called data_file on the Stack. An ifstream

object is an Input File Stream (the reason we needed to include the header fstream on line 5). An
Input File Stream allows us to read into our executing program, the contents of a file stored on disk.

To read in the data, first we need to call the open method of data_file, our ifstream object
(see line 15). Notice that we call the c_str method on our file_name string. This returns a C String
representation of the file name which data_file requires for the open method. On line 20 we read
in the contents of the file, but first we call the fail method on data_file to detect any errors when
opening the file.

Take a look at line 18. If we fail to open the file (because it doesn’t exist or we don’t have the
permission to open it), then the statement instructs the program to ‘throw invalid_argument’. This
is the first part of Exception handling. We’re saying if for some reason, we cannot open the file for
reading, then we will create an Exception of type ‘invalid argument’. In the Constructor we provide
a string describing the problem. We then ‘throw’ this Exception. If we reach this situation in our
program, the function will immediately end, as if we had a return statement on line 18. We are
‘throwing’ the ‘invalid argument’ exception out of the read_scores function. Note on line 11 we
declare that read_scores can throw an invalid_argument. Once an Exception is thrown, we shall
discover that we need to ‘catch’ it at some point in the program, or the program will terminate.

11 void read_scores(vector <int >& scores) throw (invalid_argument) {
12 ifstream data_file;
13 int temp;
14
15 data_file.open(file_name.c_str ());
16
17 if(data_file.fail ())
18 throw invalid_argument("no file exists " + file_name );
19
20 while(data_file >> temp)
21 scores.push_back(temp);
22
23 data_file.close ();
24 }

exceptions.cpp

After the read_scores function we define another function called find_average. This time we
state that the find_average function may throw a runtime_error, another type of Exception. On
line 26 we test to see if the supplied divisor is zero. If so then we cannot perform the division. If
we reach line 27 we ‘throw’ a runtime_error, immediately ending this function and skipping the
statement on line 28.

25 double find_average(const int sum , const int divisor) throw (runtime_error) {
26 if(! divisor)
27 throw runtime_error("divisor is zero");
28 return (sum / (double) divisor );
29 }

exceptions.cpp

Now let’s use these functions within our main method, to introduce the rest of the Exception
Handling syntax. Note on line 34 we open a set of curly brackets with the try keyword. We are
informing the compiler that we will ‘try’ the code within the brackets. If the enclosed code throws
an Exception, we try and ‘catch’ the Exception within a subsequent catch block, which we define on
lines 40 to 46. Exceptions can always be thrown within a program, but providing a ‘try/catch’ block
is the only means of handling them without allowing the program to terminate.

Note that in the try block we call the read_scores and find_average functions. Recall that
the read_scores function can throw an invalid_argument object. If this takes place then execution
jumps to the catch statement on line 40. Notice that we stipulate the type of Exception we’re

2



attempting to catch in brackets after the catch keyword, in this case a constant reference to an
invalid_argument object. You can catch Exceptions by value, reference, const reference or pointer,
but be sure if you throw an exception by value, you provide a corresponding catch statement that
requires a value, reference or constant reference.

If an invalid_argument exception is caught on line 40, the program executes the statements in
the subsequent catch block, denoted by the curly brackets. In this case we display a message to
screen via cout explaining that we were unable to read the data. We also call the what method on the
exception object. This returns the string which we gave to this object upon its construction, which
you’ll recall included the name of the file (see line 18). We then exit the program, using the exit

library function defined in the stdlib.h file included on line 6. The value 1 passed to this function
indicates that an error has occurred.

If we read the contents of the data file without error, then the next step of the program is to
compute the sum of the scores (lines 36-38) and average by calling the find_average function (see
line 39). Recall that if size is zero, then the find_average function will throw a run_time exception
object (line 27). If this occurs then the corresponding catch statement on line 43 will be executed.
Again we display to screen a helpful message to inform the user what went wrong before terminating
the program.

30 int main() {
31 vector <int > scores;
32 int sum = 0;
33
34 try {
35 read_scores(scores );
36 for(int i = 0; i < scores.size (); ++i) {
37 sum += scores[i];
38 }
39 cout << "avg = " << find_average(sum , scores.size ()) << "\n";
40 } catch (const invalid_argument& iae) {
41 cout << "unable to read data: " << iae.what() << "\n";
42 exit (1);
43 } catch (const runtime_error& rte) {
44 cout << "unable to compute average: " << rte.what() << "\n";
45 exit (1);
46 }
47
48 for(int i = 0; i < scores.size (); ++i)
49 cout << "score " << i << " = " << scores[i] << "\n";
50
51 return 0;
52 }

exceptions.cpp

Finally a word on memory-leaks. When you declare any memory on the heap, bear in mind that
throwing an exception before that memory is released may result in a memory-leak. Recall that
when an exception is thrown, the remainder of the current function and the calling function is not
executed. The exception is thrown until it is caught or the program terminates. See the clean_up

listing below. On line 1-3 we define a function that simply throws a runtime_error exception. The
problem is the memory_leak function defined on line 5 allocates memory on the heap for a String
object (line 6). When it calls throwing_ftn this memory never gets released because the exception
is thrown, terminating this function at line 8. Notice that the method declaration of memory_leak
doesn’t include a throw list like throwing_ftn does (line 1). In C++ this means, somewhat awkwardly
that memory_leak can possibly throw any exception. To state that a function does not throw any
exception you would provide a throw list with empty brackets after the function or method declaration
(throw ()).

1 void throwing_ftn () throw (runtime_error) {
2 throw runtime_error("something went wrong\n");
3 }
4
5 void memory_leak () {
6 string* s = new string("hello");
7
8 throwing_ftn ();
9

10 delete s;
11 }

clean up

In lines 12-22 we provide the solution to this problem in the function no_memory_leak. See line 15
and notice when we call the throwing_ftn we enclose this call within a try/catch block. Even though

3



no_memory_leak may not know how to handle the exception, we can catch any exception using the
‘(...)’ syntax on line 17. On line 18 we ‘clean up’ by calling delete on the String object, before
re-throwing the exception to the calling function on line 19. Calling throw without an exception
simply throws the last caught exception. If you use exceptions, always remember you need to clean
up any allocated memory if there’s a chance that an exception could be thrown which would result in
the omission of corresponding delete statements.

12 void no_memory_leak () {
13 string* s = new string("hello");
14
15 try {
16 throwing_ftn ();
17 } catch (...) {
18 delete s;
19 throw;
20 }
21 delete s;
22 }

clean up

C++ Style

We have seen how the Exception Handling in C++ provides an optional mechanism to pro-
grammers when encountering exceptional and unexpected states (‘C style’ return codes are
another). The way you employ these mechanisms comes down to your personal choice or style,
but there are a few guidelines to help you.
Firstly, consider where it makes the most sense to deal with an exception. Functions and
methods tend to be most readable, and easier to debug when they are written to complete
one specific task. It’s generally considered good practise, therefore, to separate the code which
catches and handles an exception to the code which detects and throws it. A significant caveat
to this rule, however, is ensuring that you release any allocated memory by possibly catching,
deleting and re-throwing any exceptions.
Consider also, what would be the most reasonable approach to dealing with the various type
of exceptions that may occur. How should your program respond, for example, to exhaustion
of memory compared to a divide by zero? While the former is typically irrecoverable (and a
symptom of greater problems such as a memory leak gone wild!) it may be possible to recover
from the latter. Bear in mind that your game will provide a pretty frustrating experience for
the player if your whole application simply terminates without the option to save any player
data or return to a safe point in the code. Keep the end user in mind and, in most situations,
if it’s possible to recover from an exception, do so!

Exercises

1. Explore the documentation for your compiler so that you know how to create programs which
do not use the exception handling mechanism.

2. Change the name of the file ‘data.txt’ and run the program, notice how the program responds
as it now cannot locate the file.

3. Change the name of the file back to ‘data.txt’. Amend line 39 so that the second argument of
the find_average function is zero. Again, note the response of the divide by zero exception.

4. Create another data file called ‘data2.txt’. In ‘data2.txt’ place 6 random integers values as in
‘data.txt’. Now amend the code so that it reads in both files and adds the values in ‘data.txt’
and ‘data2.txt’ before computing the average.

5. Create your own exception class which is thrown in the event that the size of the scores vector
is less than 10 after the values have been read and stored in the scores vector. Amend the code
to include a test for this exception and test that it works.

4


