
Tutorial 10: Post Processing

Summary

In modern games, the actual rendering of geometry to a buffer is not the end of the rendering process.
Additional post processing techniques are applied to the buffer before it is displayed, such as tone
mapping, bloom, and blurring. This tutorial will outline the basic techniques required to perform
such post processing in your graphical applications.

New Concepts

Frame Buffer Objects, multiple render targets, Render-To-Texture, Post processing, ping-pong tex-
turing

Frame Buffer Objects

As well as the front and back buffers you are used to rendering to, OpenGL supports rendering to
multiple destinations, known as Frame Buffer Objects. These FBOs contain a number of individual
textures known as attachments, that contain colour, depth, and stencil information. The geometry
you are rendering can be redirected to be drawn either to one of these FBOs, or the ’normal’ rendering
target. You can think of the standard back, depth, and stencil buffer combination as being an inbuilt
’default’ FBO that is always available.

Each FBO may have optional depth, stencil, and colour components, but must have at least one
attachment - what would it render to otherwise! OpenGL FBOs support multiple rendering targets
- that is, a single fragment shader can write to multiple colour attachments. The number of colour
attachments supported is dependent on your graphics hardware, but may be as many as 8 separate
attachments. Why would you want to render to multiple colour textures? Well, you might want to
store the displayed scene’s normals on a per pixel basis in order to do some extra processing on them,
or write fragments above a certain luminance to a separate render target in order to blur them at a
later stage. That’s the beauty of FBO multiple render targets - whatever rendering information you
think you might need, you can get on a per pixel basis, and store into a texture.

These attachments are literally just normal OpenGL 2D textures, and so may be accessed as such.
So you could, for example, render one frame into an FBO, and then use that FBO’s colour attachment
as a texture in the next frame’s rendering! There are a few limitations to the textures you attach to
your FBOs, however. The textures you use as attachments cannot be of a compressed type, which
would be undesirable anyway, due to the overhead in compressing and recompressing pixel data as

1

geometry is rendered. Also, depending on the exact extensions supported by the graphics hardware,
all of the attachments may need to be of the same dimensions.

While FBOs do not support compressed textures, they do support packed textures. When emulat-
ing the usual graphics pipeline with FBOs, it is usual to have a 32bit colour attachment, to provide 8
bits for r,g,b and a channels, and to have a 24bit z-buffer. Some graphics hardware though, requires
all attachments to be of the same bit-depth. One easy solution is to just have a 32bit z-buffer and
utilise the extra precision that brings, but what if you also wanted a stencil attachment? 32bits of
stencil data per pixel is probably overkill! This is where texture packing comes in handy. Instead of
separate stencil and depth textures, it is possible to have a combined packed texture, with 24 bits
specified for depth information, and 8 bits for stencil information.

Post Processing

Being able to render an entire scene into an accessible texture opens up a wide range of post processing
techniques, such as blurs, image sharpening, cell shading, motion blur, and so on. Any operation you
can do on an image in Photoshop, you could write as a fragment shader to act upon your FBO
attachments. The usual method of performing a post processing operation in OpenGL is by rendering
a single textured quad that fills the screen, with the FBO colour attachment bound as its texture,
and some form of special post processing shader applied. The results of the post process shader will
fill the screen, and look just as if the scene geometry had been rendered straight to the back buffer
- except of course, with the post process applied to it. Of course, when rendering one of these ’post
process’ quads, the results could be rendered into another FBO, which can then be used as an input
into another post processing shader!

By rendering the scene into an FBO, and binding the resulting colour texture to a quad, the quad can
be rendered to fill the screen, with a post processing shader applied

Ping-pong texturing

A variation on the above process for rendering multiple post processing effects is ping-pong texturing.
This is achieved by using two colour textures, but alternating between using them as inputs and
outputs in post processing stages - this can be seen as an extension of how the front and back buffers
of the rendering process are used. This can be used to successively apply the same post processing
effect, such as a blur, to the scene, or to apply numerous additional post processing shaders - no
matter how many post processes are required, only an input and an output texture are required,
flipping between them.

A post-process quad with texture A is rendered into texture B via an FBO. Texture B is then
rendered via another post-process quad into texture A, ready for another repetition of the process

2

Example Program

To show how to achieve post processing using FBOs, we’re going to write a simple example program.
This program will render last tutorial’s heightmap into an FBO, and then use that FBOs colour
attachment as input into a simple blur post processing effect. Then, we’ll do some ’ping pong’ texturing
passes to effectively increase the strength of the blur. Such blur filters are sometimes combined with
another type of post-processing, edge detection filters, to blur the jagged edges of polygons, as a form
of antialiasing. We’ll be writing another new fragment shader in this tutorial, so create a file called
processfrag.glsl in your Shaders Visual Studio project folder.

Renderer header file

In our header file, we’re going to define three new protected functions to split our rendering up - one
to draw the heightmap, one to perform the post processing, and one to draw the result of the post
processing on screen. As for variables, we have a new define - POST PASSES, which will determine
how many times the blur stage is repeated. We also have a Camera, and two pointers to Shaders this
time - one for normal rendering using the texturing shader we wrote earlier in the series, and one for
post processing, using a new fragment shader. We also have two Meshes - a heightmap, and a quad to
draw our post processed scene onto the screen. Finally, we have two Frame Buffer Objects and their
attachment textures - one to render the heightmap into, and one to perform the post process blur stage.

1 #pragma once

2

3 #include "./ nclgl/OGLRenderer.h"

4 #include "./ nclgl/HeightMap.h"

5 #include "./ nclgl/Camera.h"

6

7 #define POST_PASSES 10

8

9 class Renderer : public OGLRenderer {

10 public:

11 Renderer(Window &parent);

12 virtual ~Renderer(void);

13

14 virtual void RenderScene ();

15 virtual void UpdateScene(float msec);

16

17 protected:

18 void PresentScene ();

19 void DrawPostProcess ();

20 void DrawScene ();

21

22 Shader* sceneShader;

23 Shader* processShader;

24

25 Camera* camera;

26

27 Mesh* quad;

28 HeightMap* heightMap;

29

30 GLuint bufferFBO;

31 GLuint processFBO;

32 GLuint bufferColourTex [2];

33 GLuint bufferDepthTex;

34 };

renderer.h

3

Renderer Class file

Our constructor begins in a fairly standard way - we create a new Camera, and quad, and create the
HeightMap just as we did in tutorial 6. This time we have two shaders, so we create them both here,
then Link them both, as usual. We also set the heightmap’s texture to be repeating, just as before.

1 #include "Renderer.h"

2

3 Renderer :: Renderer(Window &parent) : OGLRenderer(parent) {

4 camera = new Camera (0.0f ,135.0f,Vector3 (0 ,500 ,0));

5 quad = Mesh:: GenerateQuad ();

6

7 heightMap = new HeightMap(TEXTUREDIR"terrain.raw");

8 heightMap ->SetTexture(

9 SOIL_load_OGL_texture(TEXTUREDIR"Barren Reds.JPG",

10 SOIL_LOAD_AUTO , SOIL_CREATE_NEW_ID , SOIL_FLAG_MIPMAPS));

11

12 sceneShader = new Shader(SHADERDIR"TexturedVertex.glsl",

13 SHADERDIR"TexturedFragment.glsl");

14 processShader = new Shader(SHADERDIR"TexturedVertex.glsl",

15 SHADERDIR"processfrag.glsl");

16

17 if(! processShader ->LinkProgram () || !sceneShader ->LinkProgram () ||

18 !heightMap ->GetTexture ()) {

19 return;

20 }

21

22 SetTextureRepeating(heightMap ->GetTexture (),true);

renderer.cpp

Now for some new stuff! We need to generate three textures - a depth texture, and two colour
textures, to use as attachments for our two FBOs. Refer back to appendix A of tutorial 3 if you can’t
remember how to create textures. Note how each texture has dimensions equal to the screen size!
We could make it less if we wanted, but that’d result in a lower quality final image, as we’d have
less than one FBO texel per screen pixel, resulting in interpolation. As we don’t want any filtering
to take place, we turn off min and mag filtering, and additionally clamp the texture - this is just to
make sure no sampling takes place that might distort the screen edges. Note how on line 40, we use
GL DEPTH STENCIL as the texture format, and GL UNSIGNED INT 24 8 as the texture size -
this is how to define the packed texture format described earlier, giving us a total of 32 bits per pixel
on both the colour and depth attachment textures. Wo won’t actually be needing the stencil buffer in
this tutorial, but it’s worthwhile knowing how to set up packed formats, and stencil buffers are often
used to selectively apply post processing effects to only part of the screen.

23 // Generate our scene depth texture ...

24 glGenTextures (1, &bufferDepthTex);

25 glBindTexture(GL_TEXTURE_2D , bufferDepthTex);

26 glTexParameterf(GL_TEXTURE_2D , GL_TEXTURE_WRAP_S , GL_CLAMP);

27 glTexParameterf(GL_TEXTURE_2D , GL_TEXTURE_WRAP_T , GL_CLAMP);

28 glTexParameterf(GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER , GL_NEAREST);

29 glTexParameterf(GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER , GL_NEAREST);

30 glTexImage2D(GL_TEXTURE_2D , 0, GL_DEPTH24_STENCIL8 , width , height ,

31 0, GL_DEPTH_STENCIL , GL_UNSIGNED_INT_24_8 , NULL);

renderer.cpp

4

32 //And our colour texture ...

33 for(int i = 0; i < 2; ++i) {

34 glGenTextures (1, &bufferColourTex[i]);

35 glBindTexture(GL_TEXTURE_2D , bufferColourTex[i]);

36 glTexParameterf(GL_TEXTURE_2D , GL_TEXTURE_WRAP_S , GL_CLAMP);

37 glTexParameterf(GL_TEXTURE_2D , GL_TEXTURE_WRAP_T , GL_CLAMP);

38 glTexParameterf(GL_TEXTURE_2D ,GL_TEXTURE_MAG_FILTER ,GL_NEAREST);

39 glTexParameterf(GL_TEXTURE_2D ,GL_TEXTURE_MIN_FILTER ,GL_NEAREST);

40 glTexImage2D(GL_TEXTURE_2D , 0, GL_RGBA8 , width , height , 0,

41 GL_RGBA , GL_UNSIGNED_BYTE , NULL);

42 }

renderer.cpp

Just like with textures and shader programs, we generate new Frame Buffer Objects, using the
OpenGL command glGenFramebuffers. We then bind an FBO, and attach textures to it to render
into - we’ll just attach textures to the bufferFBO for now, as our post process FBO ’ping pongs’ its
attachments. Finally we unbind the FBO, enable depth testing, and set init to true.

43 glGenFramebuffers (1,& bufferFBO); //We’ll render the scene into this

44 glGenFramebuffers (1,& processFBO);//And do post processing in this

45

46 glBindFramebuffer(GL_FRAMEBUFFER , bufferFBO);

47 glFramebufferTexture2D(GL_FRAMEBUFFER , GL_DEPTH_ATTACHMENT ,

48 GL_TEXTURE_2D ,bufferDepthTex , 0);

49 glFramebufferTexture2D(GL_FRAMEBUFFER , GL_STENCIL_ATTACHMENT ,

50 GL_TEXTURE_2D , bufferDepthTex , 0);

51 glFramebufferTexture2D(GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 ,

52 GL_TEXTURE_2D , bufferColourTex [0], 0);

53 //We can check FBO attachment success using this command!

54 if(glCheckFramebufferStatus(GL_FRAMEBUFFER) !=

55 GL_FRAMEBUFFER_COMPLETE || !sceneDepthTex || !sceneColourTex [0]) {

56 return;

57 }

58 glBindFramebuffer(GL_FRAMEBUFFER , 0);

59 glEnable(GL_DEPTH_TEST);

60 init = true;

renderer.cpp

In our destructor, we delete anything we created, including the FBO attachment textures, and
the FBO itself.

61 Renderer ::~ Renderer(void) {

62 delete sceneShader;

63 delete processShader;

64 currentShader = NULL;

65

66 delete heightMap;

67 delete quad;

68 delete camera;

69

70 glDeleteTextures (2, bufferColourTex);

71 glDeleteTextures (1,& bufferDepthTex);

72 glDeleteFramebuffers (1,& bufferFBO);

73 glDeleteFramebuffers (1,& processFBO);

74 }

renderer.cpp

5

The UpdateScene function is the same as tutorial 6 onwards, while the RenderScene function is
much shorter, as the rendering will be done by the three functions DrawScene, DrawPostProcess, and
PresentScene. We do call SwapBuffers here, though.

75 void Renderer :: UpdateScene(float msec) {

76 camera ->UpdateCamera(msec);

77 viewMatrix = camera ->BuildViewMatrix ();

78 }

79

80 void Renderer :: RenderScene () {

81 DrawScene ();

82 DrawPostProcess ();

83 PresentScene ();

84 SwapBuffers ();

85 }

renderer.cpp

To perform post processing using FBOs, we must first render the scene into a texture. The
DrawScene function will do just that, by binding the bufferFBO Frame Buffer Object, and rendering
the heightmap into its first colour attachment - sceneColourTex[0]. The call to glBindFramebuffer
on line 87 changes the active rendering target to our new FBO, followed by a call to glClear - this
function will work just as it does for the normal rendering output, and will clear the currently attached
FBO textures. We then set up the matrices, bind the texturing shader and draw the heightmap, before
finally clearing up by unbinding both the shader and the FBO.

86 void Renderer :: DrawScene () {

87 glBindFramebuffer(GL_FRAMEBUFFER , bufferFBO);

88 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT |

89 GL_STENCIL_BUFFER_BIT);

90

91 SetCurrentShader(sceneShader);

92 projMatrix = Matrix4 :: Perspective (1.0f ,10000.0f,

93 (float)width / (float)height , 45.0f);

94 UpdateShaderMatrices ();

95

96 heightMap ->Draw ();

97

98 glUseProgram (0);

99 glBindFramebuffer(GL_FRAMEBUFFER , 0);

100 }

renderer.cpp

DrawScene rendered our heightmap scene into the FBO attachments, now to perform the post
processing operation on it! To do this we’re going to use another FBO, but, instead of rendering the
heightmap, we’re going to render a single screen-sized quad, using a special post processing fragment
shader. If you remember back to earlier in the tutorial series when we created the Mesh class function
GenerateQuad, you’ll recall that the quad had vertex positions from -1.0 to 1.0 on the x and y axis.
So, the easiest way to draw a quad that will fill the screen is to make the view matrix an identity
matrix, and the projection matrix an orthographic matrix that goes from -1.0 to 1.0 on each axis.

Like DrawScene, we begin by binding the post-processing FBO, and then attaching bufferColour-
Tex[1] to it, and clearing it. Then we switch to the post processing shader, and set up the orthographic
projection. We’re going to be drawing a quad on screen multiple times, so we disable depth testing
temporarily, so the quad will always be drawn, overwriting the previous contents of the FBO colour
attachment.

6

Before we render the quad using our processShader program, we must set a uniform variable
in the fragment shader. It’s quite common for post processing fragment shaders to sample a bound
texture across multiple adjacent texels, and to do this it needs to know how large each texel is. As
texture coordinates are measured from 0.0 to 1.0, to get the texel size, we divide 1 by the width and
height of the texture - which in this case, will be the dimensions of the screen, as we’re going to bind
a screen-sized texture to the quad we’re going to draw.

101 void Renderer :: DrawPostProcess () {

102 glBindFramebuffer(GL_FRAMEBUFFER , processFBO);

103 glFramebufferTexture2D(GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 ,

104 GL_TEXTURE_2D , bufferColourTex [1], 0);

105 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

106

107 SetCurrentShader(processShader);

108 projMatrix = Matrix4 :: Orthographic (-1,1,1,-1,-1,1);

109 viewMatrix.ToIdentity ();

110 UpdateShaderMatrices ();

111

112 glDisable(GL_DEPTH_TEST);

113

114 glUniform2f(glGetUniformLocation(currentShader ->GetProgram (),

115 "pixelSize"), 1.0f / width ,1.0f / height);

renderer.cpp

Next, is the actual post processing effect stage. The fragment shader is going to perform a 2-pass
gaussian blur - 1 pass to blur vertically, and 1 pass to blur horizontally. Both passes are performed
by the same shader, switched between by the uniform int isVertical. We’re also going to ’ping pong’
between colour buffers, so that vertical the horizontal blurring stage is performed first, and then the
result of that stage is then vertically blurred. Finally, this is placed inside a simple for loop, to show
how the blur effect can be progressively built up over multiple passes.

So, we bind bufferColourTex[1] as a colour attachment (line 117), bind bufferColourTex[0] as a texture
(line 122), and run the post-process shader on a full-screen quad (line 123). Then, we swap around
the bufferColourTex textures (lines 127 and 130), so that the first stage output is used as the second
stage input. This is then used as the input texture of the next iteration of the for loop, building up
the blur effect.

116 for(int i = 0; i < POST_PASSES; ++i) {

117 glFramebufferTexture2D(GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 ,

118 GL_TEXTURE_2D , bufferColourTex [1], 0);

119 glUniform1i(glGetUniformLocation(currentShader ->GetProgram (),

120 "isVertical"), 0);

121

122 quad ->SetTexture(bufferColourTex [0]);

123 quad ->Draw ();

124 //Now to swap the colour buffers , and do the second blur pass

125 glUniform1i(glGetUniformLocation(currentShader ->GetProgram (),

126 "isVertical"), 1);

127 glFramebufferTexture2D(GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 ,

128 GL_TEXTURE_2D , bufferColourTex [0], 0);

129

130 quad ->SetTexture(bufferColourTex [1]);

131 quad ->Draw ();

132 }

renderer.cpp

7

With the post processing over, we simply unbind the FBO and shader, and re-enable depth testing.

133 glBindFramebuffer(GL_FRAMEBUFFER , 0);

134 glUseProgram (0);

135

136 glEnable(GL_DEPTH_TEST);

137 }

renderer.cpp

At the end of post processing, the final blurred image is held in the bufferColourTex[0] texture.
So, to draw that texture on screen, we draw another screen sized quad, but this time not to a FBO
colour target, but instead straight to the screen. As this is the only rendering stage that draws to
the screen, we wait until now to glClear the back buffer, then bind the basic texturing shader, set the
screen-sized quad orthographic projection, bind the correct texture, and draw the full screen quad.
With that, the blurred image of the heightmapped terrain should be on screen.

138 void Renderer :: PresentScene () {

139 glBindFramebuffer(GL_FRAMEBUFFER , 0);

140 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

141 SetCurrentShader(sceneShader);

142 projMatrix = Matrix4 :: Orthographic (-1,1,1,-1,-1,1);

143 viewMatrix.ToIdentity ();

144 UpdateShaderMatrices ();

145 quad ->SetTexture(bufferColourTex [0]);

146 quad ->Draw ();

147 glUseProgram (0);

148 }

renderer.cpp

Fragment Shader

Our post processing fragment shader is going to perform a type of filtering known as a Gaussian Blur.
This is performed quite simply - each pixel of a blurred image is formed from the weighted sum of
surrounding source image pixels, with pixels further away contributing less to the final colour.

Normally, this is performed in one large pass, whereby all of the pixels in a square area contribute
to some amount to the final pixel colour - 5 by 5 and 7 by 7 are common sizes for this gaussian matrix.
To reduce the number of texture samples required to perform a blur effect suitable for use in games,
it is common to reduce this to a two stage algorithm, first doing a 1D blur horizontally, and then a
1D vertical blur.

Starting from a single red pixel, the horizontal and vertical gaussian blur stages result in the right
image

8

Our gaussian blur shader is going to perform a 5 by 5 matrix blur on the FBO colour target con-
taining the heightmap scene, split into a horizonal and vertical pass. The gaussian blur shader relies
on being able to calculate the texture coordinate of the surrounding texels of the source image - the
pixelSize uniform variable should contain the correct size of each texel. We also have the isVertical
uniform int, to determine which blur pass the shader should calculate.

On line 14, we have an array of const floats - these are the weights by which each texel will be
multiplied to determine how much each texture sample will contribute to the final fragment colour. If
you add these weights up, you should be able to see that the total of these weight values is 1.0. This
is necessary to maintain the overall brightness of the image after blurring - if it were greater than 1,
the image would get brighter after every blur pass, or darker if it were less than 1.0.

In the main function, we begin with a declaration of an array of vec2s. This will hold the texture
sample coordinates for the surrounding texels, in either the horizontal or vertical axis. We determine
which values to put in the values array via the if statement on line 19 - if we’re in the vertical pass,
we modify the y axis of the values array, otherwise the x axis. The values added are determined by
multiplying the pixelSize uniform variable - note how it starts off negating the values.

On line 30, we perform the sampling of the FBO input texture. In each iteration of the for loop, we
sample a surrounding texel of the FBO texture, by adding the corresponding values vec2 (which may
be negative) to the interpolated texCoord value, and then multiplying the sample by the current weight.

1 #version 150 core

2

3 uniform sampler2D diffuseTex;

4 uniform vec2 pixelSize;

5 uniform int isVertical;

6

7 in Vertex {

8 vec2 texCoord;

9 vec4 colour;

10 } IN;

11

12 out vec4 fragColour;

13 // Technically , this isn’t quite a ’gaussian ’ distribution ...

14 const float weights [5] = float [](0.12 , 0.22, 0.32, 0.22, 0.12);

15

16 void main(void) {

17 vec2 values [5];

18

19 if(isVertical == 1) {

20 values = vec2 [](vec2(0.0,- pixelSize.y*2),

21 vec2(0.0,- pixelSize.y*1), vec2 (0.0 ,0.0) ,

22 vec2 (0.0, pixelSize.y*1) , vec2 (0.0, pixelSize.y*2));

23 }

24 else{

25 values = vec2 [](vec2(-pixelSize.x*2, 0.0),

26 vec2(-pixelSize.x*1, 0.0), vec2(0, 0.0),

27 vec2(pixelSize.x*1 ,0.0) ,vec2(pixelSize.x*2 ,0.0));

28 }

29

30 for(int i = 0; i < 5; i++) {

31 vec4 tmp = texture2D(diffuseTex , IN.texCoord.xy + values[i]);

32 fragColour += tmp * weights[i];

33 }

34 }

processfrag.glsl

9

Tutorial Summary

If you run the example program, you should see the heightmap, but with the gaussian blur applied to
it. By modifying the POST PASSES define, you can increase or decrease the strength of the blur, as
progressively more passes will be applied to the scene. It’s not too impressive, but in completing this
tutorial, you’ve learnt how to apply post processing effects to your scenes, via the use of a fragment
shader a screen-sized quad. You’ve also learnt how to render into a Frame Buffer Object, and swap
its attachments as necessary. FBOs are useful for more than just post processing - you could have a
4 player split screen game by rendering multiple viewpoints into FBOs, and drawing the outputs as
quads on screen.

Further Work

1) Investigate sobel filters - a type of edge detection algorithm. You should be able to modify process-
Frag to perform edge detection rather than image blurring.

2) Games sometimes simulate a ’double vision’ effect when the player character is hit. You should
be able to replicate such an effect as a post process filter, by taking two samples - one at the normal
position, and one from somewhere nearby.

3) Try adding multiple Cameras to the scene, and rendering each camera’s viewpoint to an FBO
attachment. You should be able to draw each viewpoint on screen as a quad, to create a multiple
viewpoint effect. Or perhaps draw from a top down viewpoint to use as an on-screen map?

10

